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Abstract

A Runge-Kutta-Fehlberg method (RKF45) is considered to solve an SEIR (Susceptible-Exposed-
Infected-Recovered) mathematical model for infectious disease transmission. This numerical method is
of the Runge-Kutta class, and has theoretical order of accuracy four and five depending on the involved
formulations. We limit our problem to the RKF45 formula having theoretical order five. It is important to
understand the behavior of RKF45 in solving an initial value problem, especially when implemented for real
problems. In this paper, we take an SEIR mathematical model in our case, because this model is applicable in
the prediction of infectious disease transmission in real life. Our research method is quantitative. We record
the errors of numerical simulations. From the error values, we determine the numerical order of accuracy. Our
research results show that RKF45 produces numerical order of accuracy five for the time step is sufficiently
small. Therefore, the numerical order of accuracy matches with the theoretical one.
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1. Introduction

Numerical methods have been important tools for solving various mathematical problems [1].
A mathematical problem itself is usually occurred from a real-world problem. This means that numerical
methods are useful for solving real-world problems [2].

In this paper we consider a Runge-Kutta-Fehlberg method (RKF45) [3], which is applicable for solving
an initial value problem of ordinary differential equations, such as an SEIR (Susceptible-Exposed-Infected-
Recovered) mathematical model [4]. RKF45 method and SEIR model are of our interest, because RKF45
is simple to program (as it is a one-step method) and it has the order of accuracy four or five, and SEIR
model is useful in modelling the real-world infectious disease transmission. In this paper, we limit our
RKF45 method to be the one having the fifth order of accuracy.

The theoretical order of accuracy of a numerical method needs to be verified numerically. This is
important, because modelers must know the behavior of the numerical method when implemented.
Understanding the numerical behavior of the method is useful, so that the analysis of numerical results will
be more accurate [5]-[7]. This will aid in understanding the solutions of the real-world problem through
mathematical modeling and its solutions [8]-[13]. Based on these grounds, this paper aims to verify
numerically the fifth order RKF45 method in solving a SEIR model.

The rest of this paper consists of Section 2 recalling the mathematical model, Section 3 writing the
numerical method, Section 4 containing results and discussion, and Section 5 remarking some conclusions.

2. Mathematical Model

The SEIR model for infectious disease transmission consists of four compartments of the population,
namely, S (Susceptible) subpopulation, E (Exposed) subpopulation, I (Infected) subpopulation, and R
(Recovered) subpopulation. In this paper we consider the improved SEIR model proposed by Jiao et al. [4].
The schematic diagram of the model is illustrated in Figure 1.
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Figure 1. Schematic diagram for the SEIR model.

The SEIR model is expressed as a system of ordinary differential equation as follows [4]:

d

= 4= B = )OI + BEM] - i (D),

d

o= B = B)SOU® + ,EM] ~ (5 + WE), "

d
= SEO - 0o+,

dR
T (y + 650) — uR(t).

In this model, t is the time variable and 4, 8, 6,,0,, 05,1, 8,y, 0 are parameters. In addition, S, E, I, R are
dependent on t. More explanation and properties of this model are available in the work of Jiao et al. [4].

3. Methods
The numerical method for solving the problem is the fifth-order RKF45. Suppose we are given the
initial value problem:

dy
— = t,
AR
y(to) = ¥o
then the fifth-order RKF45 method takes the following scheme [3]:
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Therefore, the RKF45 scheme for solving the model is:

s S+(16k 6656k +28561k 9k k )

1 1355 12825 %35 T 5ga30 45 "5 T 55 6.5

. E+(16k 6656k +28561k 9k L2 k )

1 135 8 T 12825 3% T 5ga30 4% T 505~ 55 6.F 4)

16 6656 28561 9

lin =1 +(135k“ 12825 31 T 56230 <41 T 50k5’+55k6’)
. R+(16k +6656k 28561k 9k L2 k )

1 135 1R T 12825 3% T 5ga30 4k T 5g K5k T 55 Ker

with the k4, ky, k3, k4, ks, kg values are as follows:



1. The k4 values are given by:
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4. Results and Discussion

For simulations, we take initial values of the variables listed in Table 1 and parameters in Table 2. We
take two different parameters 6, which are 6, = 0.9 and 6,, = 0.7. Parameter 6, = 0.9 leads to a
reproduction number R, smaller than 1, whereas 6;, = 0.7 results in a reproduction number R, greater
than 1.

Table 1. Variables and their initial values

Variables Initial values
S(0) 100
E(0) 15
1(0) 20
R(0) 4

Table 2. Parameters and their values

Parameters Values
A 10
B 0.2

01 0.9
01, 0.7
0, 0.1
04 0.3
u 0.3
1) 0.3
y 0.2
a 0.2

1. For Ry < 1, it can be obtained using 6; = 6, = 0.9, that is,
R = AB(1 - 915)[5 +0,(y + o+ ]

0 u@y +o+ w6+ w
Because reproduction number R, < 1, the system converges to a disease free equilibirum:

A 10
£0 = (S°,E°, 9, R) = (;,0,0,0) = (ﬁ,o,o,o) = (33.33,0,0,0)

Simulation results for this case Ry < 1 using the RKF45 method is shown in Figure 2. We observe that
for this case, as time t gets large, the system contains only the Susceptible subpopulation S.

=0.5873 <1

2. For Ry > 1, it can be obtained using 6; = 6;, = 0.7, that is,
. 2 AB(1=6,)[8 + 6,0 + 0+ p)]

o uly +o+ S +p
Because reproduction number R, > 1, the system converges to an endemic equilibrium:

g* — (S*,E*,I*,R*)

=1761>1

where
y+o+w(E+uw
§* = =18.918
B(1—6:,)[8 +6,(y + 0 +p)]
Lo N uly +o+w 3
B = G+w) p(1-0.,)6+6,0+0+w) = 7.207
=9 ((6 +wWh+o+w) p(1-06,)(6+0,(+0+ y))) 3088
. < As(y +650) 5(y + 650) ) 2676
G+l +o+mw) B(1-8,)(6+6,(r+o+w))

Simulation results for this case R, > 1 using the RKF45 method is shown in Figure 3. We observe from
this figure that as time evolves, the Infected subpopulation I does not vanish. This means the disease
exists in the system all the time.
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Simulation with RKF45 for disease free equilibrium
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100
—Susceptible (S(t))
—Exposed (E(t))
80 —Infected (I(t)) |
Recovered (R(t))
X 60
g
< 40 .
w
20
%
0 ‘ .
0 5 10 15 20 25 30

Time (t)

Figure 2. Simulation results using the RKF45 method for the case of disease-free equilibrium

Simulation with RKF45 for endemic equilibrium
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Figure 3. Simulation results using the RKF45 method for the case of endemic equilibrium

Now we shall report the main results of our research. To do so, we recall the formula of the order of
accuracy for the numerical method [14]:
log( Error; )
Error;,4

log (A%itil)

where Error; is the average error, At; is the time step h = At; andi = 0,1,2, ..., n. Note that the exact solution
to the SEIR model is not known until when this paper is written, so we use ODE45 of the MATLAB software
as our reference solution. When ODE45 function is used, we set the AbsTol and RelTol both to be 10713,

Ri=
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1. ForRy<1
For the case of disease-free equilibrium, we record the average absolute and average relative errors
and report the orders of accuracy based on these errors. Tables 3-6 provide the errors and orders of accuracy

for Susceptible, Exposed, Infected, and Recovered subpopulations. We observe that the orders of accuracy
converge to five as the time step gets small.

Table 3. Order of Accuracy of RKF45 for Susceptible S with Ry < 1.

h Absolute Relative Order of accuracy based on Order of accuracy based on
error error absolute error relative error
0.8 6.601E-03 2.078E-04 - -
0.4 3.581E-05 1.242E-06 7.526 7.387
0.2 3.794E-07 1.176E-08 6.561 6.721
0.1 1.058E-08 2.415E-10 5.164 5.606
0.05 3.395E-10 6.938E-12 4.962 5.122
0.025  1.088E-11 2.160E-13 4.963 5.005

Table 4. Order of Accuracy of RKF45 for Exposed E with Ry < 1.

h Absolute Relative Order of accuracy based on Order of accuracy based on
error error absolute error relative error
0.8 2.998E-03 1.569E-04
0.4 4.618E-06 7.021E-07 9.343 7.805
0.2 5.063E-07 2.779E-08 3.189 4.659
0.1 1.874E-08 9.079E-10 4.755 4.936
0.05 6.084E-10 2.834E-11 4.945 5.001
0.025  1.921E-11 8.826E-13 4.985 5.005

Table 5. Order of Accuracy of RKF45 for Infected I with Ry < 1.

h Absolute Relative Order of accuracy based on Order of accuracy based on
error error absolute error relative error
0.8 2.208E-03 2.239E-04 - -
0.4 3.003E-05 2.684E-06 6.200 6.383
0.2 6.169E-07 5.041E-08 5.605 5.735
0.1 1.581E-08 1.238E-09 5.286 5.348
0.05 4.500E-10 3.460E-11 5.135 5.161
0.025 1.344E-11 1.025E-12 5.064 5.076

Table 6. Order of Accuracy of RKF45 for Recovered R with Ry < 1.

h Absolute Relative Order of accuracy based on Order of accuracy based on
error error absolute error relative error
0.8 1.267E-03 2.195E-04 - -
0.4 1.205E-05 1.999E-06 6.716 6.779
0.2 1.985E-07 3.207E-08 5.924 5.962
0.1 4.640E-09 7.366E-10 5.419 5.444
0.05 1.274E-10 2.008E-11 5.187 5.197

0.025  3.756E-12 5.942E-13 5.084 5.079
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2. ForRy>1

For the case of endemic equilibrium, again we record the average absolute and average relative errors
and report the orders of accuracy based on these errors. Tables 7-10 contain the error values and orders of
accuracy for Susceptible, Exposed, Infected, and Recovered subpopulations. Once again, we observe that the
orders of accuracy tend to five as the time step approaches small values. However, the order of accuracy can
be less than five if the time step is too small.

Table 7. Order of Accuracy of RKF45 for Susceptible S with Ry > 1.

h Absolute Relative Order of accuracy based on Order of accuracy based on
error error absolute error relative error
0.8 1.642E-01 9.527E-03 - -
0.4 3.719E-04 1.407E-05 8.786 9.403
0.2 7.132E-06 4.746E-07 5.705 4.891
0.1 3.072E-07 1.802E-08 4.537 4.719
0.05 1.012E-08 5.778E-10 4.923 4.963
0.025  3.204E-10 1.810E-11 4.982 4.996

Table 8. Order of Accuracy of RKF45 for Exposed E with Ry > 1.

h Absolute Relative Order of accuracy based on Order of accuracy based on
error error absolute error relative error
0.8 1.536E-01 3.741E-03 - -
0.4 4.914E-04 1.547E-05 8.288 7.918
0.2 1.211E-05 2.878E-07 5.342 5.748
0.1 3.944E-07 8.512E-09 4.941 5.079
0.05 1.210E-08 2.540E-10 5.027 5.066
0.025  3.728E-10 7.800E-12 5.020 5.026

Table 9. Order of Accuracy of RKF45 for Infected I with Ry > 1.

h Absolute Relative Order of accuracy based on Order of accuracy based on
error error absolute error relative error
0.8 3.679E-02 2.448E-03 - -
0.4 3.303E-04 1.984E-05 6.799 6.947
0.2 4.927E-06 2.720E-07 6.067 6.189
0.1 1.042E-07 5.409E-09 5.563 5.652
0.05 2.688E-09 1.356E-10 5.277 5318
0.025  7.700E-11 3.918E-12 5.126 5.113

Table 10. Order of Accuracy of RKF45 for Recovered R with Ry > 1.

h Absolute Relative Order of accuracy based on Order of accuracy based on
error error absolute error relative error
0.8 2.027E-02 1.954E-03 - -
0.4 1.220E-04 1.225E-05 7.376 7.317
0.2 1.149E-06 1.318E-07 6.730 6.539
0.1 1.784E-08 2.425E-09 6.009 5.764
0.05  4.454E-10 6.525E-11 5.324 5.216

0.025  1.544E-11 2.166E-12 4.850 4.913
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We obtain by simulations that the fifth-order RKF45 method is numerically verified that the numerical
order of accuracy matches with the theoretical order of accuracy. Some variations may occur, that is, the
numerical order of accuracy can be larger and smaller than five, as recorded in Tables 3-10. It can be larger
than five for relatively large time-step variations, and smaller than five for relatively too small time-step
variations.

5. Conclusion

We have verified numerically that the theoretically fifth-order RKF45 method achieved the order five
when time step is sufficiently small. Larger numerical order of accuracy occurred in our simulations when
time step is quite large. We note that large numerical order of accuracy is advantageous for solving initial
value problems numerically if accuracy is more concerned than the speed of computation. This research is
limited to numerical experiments. Future research direction could take numerical analysis of the errors of
RKF45 when implemented to solve an SEIR model.
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