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Abstract 

The utilization of deep learning (DL) technology in brain MRI image analysis has seen significant 

advancements over the past five years. This study presents a systematic review of literature from 2020 to 

2025, evaluating DL progress in automated tumor lesion segmentation, tumor type classification, genetic 

biomarker prediction, and treatment response monitoring. Various DL architectures, such as nnU-Net and 

ensemble models, dominate segmentation tasks, while transformer-based methods and foundation models 

are emerging as new pathways for large-scale medical image management. However, technical challenges 

including cross-institutional MRI protocol variations, underrepresentation of pediatric data, and model bias 

remain primary concerns. Initiatives like BraTS and federated learning approaches offer potential solutions 

to enhance DL model validity and scalability. This review highlights future directions for developing more 

adaptive, accurate, and ethical DL systems to support individualized and sustainable brain tumor diagnosis 

and management. 
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1. Introduction 

 
Brain tumors represent one of the most challenging and potentially life-threatening neurological 

conditions. Diagnostic accuracy and speed play a crucial role in determining patient prognosis and treatment 

strategies. Clinicians typically group brain tumors into two primary categories: those originating directly 

within brain tissue (primary), and those forming secondary to the central nervous system (CNS) metastasis 

from remote anatomical sites [1]. Despite lower incidence versus other cancers, brain tumors, especially 

high-grade variants like glioblastoma multiforme (GBM) —exhibit alarming mortality patterns [2].  

Within modern neuro-oncological workflows, magnetic resonance imaging (MRI) has emerged as the 

indispensable modality for initial tumor detection and longitudinal monitoring of neoplastic progression. 

When contrasted with computed tomography (CT) and other imaging alternatives, MRI uniquely achieves 

dual diagnostic advantages: exceptionally detailed cerebral anatomical mapping alongside unprecedented 

discrimination of subtle soft-tissue interfaces [3]. Yet manual radiological assessment confronts persistent 

obstacles—notably inconsistent interpretations between specialists, time-consuming analytical processes, 

and inherent reliance on operator expertise. Collectively, these limitations routinely compromise the speed 

and accuracy essential for optimal therapeutic decisions. 

Deep learning applications show compelling utility in MRI-based neuro-oncological analysis, 

particularly for tumor segmentation and classification tasks. Convolutional neural networks (CNN) provide 

the dominant framework, autonomously extracting multidimensional spatial features from neuroimaging 

data to drive segmentation architectures like U-Net, nnU-Net, and their ensemble derivatives [4]. Beyond 
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delivering rapid segmentation with clinical-grade accuracy, these systems enable radio genomic prediction 

of critical biomarkers-including IDH1 allelic status and MGMT promoter methylation patterns-directly 

from quantitative imaging phenotypes. Novel paradigms integrating foundation models with vision 

transformers now address key challenges: mitigating data scarcity while enhancing cross-population 

generalizability. This technological convergence consequently establishes new paradigms for expeditious, 

precision-enhanced diagnostic pathways in neuro-oncology. 

This systematic investigation evaluates the maturation of deep learning techniques form MRI-driven 

brain tumor recognition between 2020 and 2025. By synthesizing emergent literature, we seek to deliver 

actionable intelligence enabling neurologists, researchers, and AI engineers to strategically harness 

computational intelligence within neuro-diagnostic frameworks. 

2. Methods 

This research adopts a Systematic Literature Review (SLR) methodology structured by the PRISMA 

(Preferred Reporting Items for Systematic Review and Meta-Analyses) framework, ensuring rigorous 

transparency throughout our scholarly investigation. We deliberately selected this approach to maintain 

methodological integrity during literature identification, screening, and analytical phases. Primary data 

acquisition involved comprehensive retrieval of peer-reviewed publications focused on deep learning 

implementations for brain tumor diagnosis using MRI. Our research strategy targeted four principal 

knowledge repositories: IEE Xplore, ScienceDirect, and Scopus, and the preprint repository ArXiv—

supplemented by specialized neuroimaging journals indexed in MEDLINE. 

Our systematic search incorporated targeted keyword phrases: deep learning, brain tumor, MRI, 

segmentation, and classification. All retrieved publications underwent rigorous filtration against predefined 

inclusion/exclusion criteria prior to analytical processing. The inclusion protocol mandated: (1) publication 

dates within 2020-2025, (2) English-language content, (3) primary focus on DL implementations for MRI-

based tumor recognition, (4) complete text accessibility, and (5) peer-reviewed validation status. Studies 

failing to meet these criteria – including those based on non-MRI imaging, non-primary research, or lacking 

full-text access were excluded. Exclusion criteria specifically encompassed: (1) Brain tumor diagnosis 

without MRI data, (2) Comparisons of deep learning models with non-DL methods for MRI analysis, (3) 

Articles without clearly stated research objectives, (4) Insufficient documentation of methodological 

strengths/limitations, (5) Publications outside reputable journals/conferences proceeding. Quality 

assessment was subsequently conducted using three key indicators: (1) Clarity of research objectives, (2) 

Comprehensive reporting of methodological strengths and limitations, (3) Publication venue reputation. 

 
3. Results and Discussion 

Based on systematic analysis of 25 scientific articles published between 2020 and 2025, diverse deep 

learning approaches for MRI-based brain tumor identification and segmentation were identified. These 

articles were comprehensively analyzed and presented in Table 1, summarizing author names, publication 

years, methodologies, dataset types, and strengths/challenges of each approach. Most studies adopted 

Convolutional Neural Network (CNN) architecture particularly U-Net and nnU-Net variants-which 

demonstrated superior performance in spatial lesion segmentation with high accuracy. Recent studies reveal 

an emerging trend of transformer models (e.g., Swin-UNETR, BiTr-UNet) and hybrid CNN-ViT 

architectures addressing spatial limitations while improving cross-domain generalization. The BraTS (Brain 

Tumor Segmentation Challenge) dataset across its 2020, 2021, and 2023 versions was predominantly 

utilized, providing multimodal MRI (T1, T1c, T2, and FLAIR) from glioma patients. 

 

Table 1. Deep Learning for MRI Brain Tumor Analysis: Data Extraction 

No Author (Year) Method Used Dataset Strengths Challenges 

1 Khan et al. 

(2023) [4] 

CNN, U-Net, 

ResU-Net, 

Ensemble 

nnU-Net 

BraTS, TCIA, 

IBSR 

High tumor 

segmentation 

accuracy, 

exploration of 

multiple DL 

architectures. 

Overfitting, cross- 

hospital protocol 

variations, 

imbalanced class 

distribution 
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2 Krishnan et al. 

(2024) [5] 

Rotation- 

Invariant 

Vision 

Transformer 

(RViT) 

Kaggle Brain 

Tumor MRI 

High 

classification 

precision (98.6% 

accuracy, 

F1=0.984), 

robust to image 

rotation 

Requires high 

processing power 

pre-training 

3 Ferdous et al. 

(2023) [6] 

LCDEIT 

Transformer 

Figshare, 

BraTS-21 

Efficient training 

on small datasets, 

excellent 

performance with 

high accuracy/F1 

Scores on MRI 

benchmarks 

Requires further 

evaluation on other 

datasets; attention 

mechanisms need 

careful tuning; high 

complexity for direct 

clinical 

implementation 

4 Zeineldin et al. 

(2024) [7] 

TransXAI 

(hybrid 

Vision 

Transforme

r 

+ CNN), 

Grad-CAM 

explainability 

BraTS 2019, 

Citra 

multimodal 

MRI: 

T1,T1Gd, T2, 

dan 

FLAIR 

High 

segmentation 

accuracy, 

interpretable 

saliency 

heatmaps, 

clinical 

transparency 

Limited to single 

dataset evaluation; 

computational 

demands require 

adequate hardware 

for clinical 

deployment 

5 Reddy et al. 

(2024) [8] 

Fine-Tuned 

Vision 

Transforme

r 

(FTVT- 

b16/b32/I16/1 

32) 

MRI brain tumor 

dataset 

Images 

(glioma, 

meningioma, 

pituitary, no 

tumor) 

High accuracy 

(up to 98.70% 

for FTVT- 

I16), 

outperforms other 

DL models 

6 Poornam & 

Angelina 

(2024) [9] 

VITALT 

(Vision 

Transformer 

+ Linear 

Transformati 

on) 

BraTS 2021 Robust to image 

variations, high 

multi-class 

classification 

accuracy 

Model complexity 

requires intensive 

tuning 

7 Liu et al. 

(2023) [10] 

Ensemble 

Vision 

Transformers 

Custom 

Glioblastoma 

dataset 

High precision 

glioblastoma 

segmentation, 

benefits from 

model ensemble 

Computationa

lly intensive, 

overfitting risk 

in large 

ensembles 

8 Singh et al. 

(2022) [11] 

3D CNN 

with attention 

gating 

BraTS 2020 High multi-label 

segmentation 

precision 

Significant 

GPU memory 

requirements 

9 Zhou et al. 

(2021) [12] 

nnU-Net + 

transfer 

learning 

TCGA- 

GBM/LGG 

Rapid 

adaptation to 

new datasets 

Overfitting on 

small data 

10 Chen et al. 

(2023) [13] 

U-Net++ Private 

clinical 

dataset 

Efficient 

simultaneous and 

classification 

Limited 

validation 
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11 Wang et al. 

(2021) [14] 

GAN-based 

augmentatio

n 

+ CNN 

BraTS 

2019 

Enhanced data 

variation, 

improved 

accuracy 

Increased 

architectural 

complexity 

12 Nguyen et al. 

(2024) [15] 

Multi-view 

CNN 

Kaggle 

Brain 

MRI 

Superior 

accuracy 

compared to 

single-view 

approaches 

Longer 

training times 

13 Patel et al. 

(2022) [16] 

Hybrid 

CNN- 

Transformer 

TCIA Combines 

strengths of 

CNN 

& 

transformer 

Still in 

exploratory 

phase 

14 Ghosh et al. 

(2021) [17] 

EfficientNet 

+ Squeeze- 

Excite 

Private 

dataset 

Lightweight 

and 

efficient, 

suitable for 

small 

clinics 

Limited 

scalability 

15 Yadav et al. 

(2023) [18] 

Capsule 

Network 

TCGA Robust to 

noise 

and 

distortion 

Complex 

training 

curve 

16 Lee et al. 

(2022) [19] 

Attention U- 

Net 

BraTS 

2021 

Enhanced 

focus 

on tumor 

regions 

Require 

detailed 

annotations 

17 Ahmed et al. 

(2020) [20] 

Deep 

Residual U- 

Net 

TCGA-

GBM 

High 

glioblastom

a 

segmentatio

n 

accuracy 

Require large 

datasets 

18 Tang et al. 

(2021) [21] 

Transformer 

encoder- 

decoder 

Custom 

annotat

ed 

MRI 

Generalizab

le and 

flexible 

Time 

consuming 

training 

19 Bose et al. 

(2023) [22] 

DenseNet + 

Attention 

BraTS 

+ 

ISLES 

Combines 

segmentatio

n & 

outcome 

prediction 

Sharp training 

curve 

20 Walia et al. 

(2021) [23] 

Autoencoder

- based 

segmentatio

n 

Open 

Access 

MRI 

Efficient 

feature 

dimensional

ity 

Reduced 

accuracy for 

small tumors 

21 Tan et al. 

(2022) [24] 

Dual-path 

CNN 

TCIA + 

Private 

High 

generalizati

on 

capability 

Difficult to 

implement in 

real- 

time 

22 Sharma et al. 

(2023) [25] 

GAN + 

Transformer 

BraTS 

2020 

Effective 

augmentatio

n and 

classificatio

GAN training 

stability issues 



79 

  

 

n 

23 Zhang et al. 

(2024) [26] 

Vision 

Transformer 

with Self- 

supervised 

Learning 

Unlabe

led 

MRI 

Reduces 

annotation 

dependency 

Uneven 

effectiveness 

across tumor 

types 

24 Iqbal et al. 

(2022) [27] 

Multi-scale 

ResNet 

TCIA Detect 

tumors of 

various 

sizes 

High 

processing 

complexity 

25 Roy et al. 

(2023) [28] 

Meta-

learning 

CNN 

BraTS 

2021 

Adaptive to 

new 

domains 

Meta-

parameter 

tuning 

challenges 

 

 

The implementation of deep learning (DL) technology in brain MRI image analysis has demonstrated 

significant progress in recent years. In the medical field, particularly for brain tumor identification and 

segmentation, DL has driven rapid advancements in diagnostic accuracy and speed. Architecture such as 

CNN, U-Net, nnU-Net, and Vision Transformers (ViT) have proven effective in detecting and analyzing 

tumor lesions in MRI scans. However, like most technologies, DL-based MRI processing faces several 

challenges that must be overcome to achieve broader and more effective clinical adoption. 

A primary challenge is the heterogeneity of MRI data across institutions, where differing imaging 

protocols can compromise mode generalizability. Models trained on one dataset often underperform on 

others due to technical variations. Initiatives like BraTS (Brain Tumor Segmentation Challenge) address 

this by providing multimodal MRI datasets for training and testing DL models in more representative 

context. These datasets include diverse MRI scans from glioma patients, enabling researchers to develop 

more accurate and reliable models.  

Recent research also highlights transformer-based models (e.g., Swin-UNET, BiTr-UNet) excel in 

specific MRI processing tasks. These architectures handle spatial complexity in larger, more variable images 

effectively. The Rotation-Invariant Vision Transformer (RI-ViT) [4] illustrates a pivotal computational 

trade-off in neuroimaging: Its innovative rotation-correction mechanism substantially boosts tumor 

classification fidelity yet concurrently impose demanding processing requirements. Beyond such resource-

intensity constraints, medical DL systems confront deeper epistemological challenges—while achieving 

remarkable diagnostic accuracy, their decision pathways remain fundamentally inscrutable. This opacity 

presents clinical hazards where diagnostic traceability constitutes an ethical imperative. Consequently, 

developing intrinsically interpretable frameworks (e.g., Grad-CAM activation mapping or convolutional 

feature visualization) becomes non-negotiable for pinpointing anatomically decisive regions in diagnostic 

judgments. 

Data integrity persists as a critical concern in neuroimaging analytics. Although public repositories like 

BraTS remain prevalent research resources, constructing truly representative cohorts—spanning diverse 

tumor phenotypes, demographic variables, and imaging protocols—demands urgent attention. Federated 

learning presents a compelling alternative by facilitating collaborative model refinement without centralized 

data pooling, thereby preserving patient confidentiality while strengthening DL generalizability. When 

applied to MRI interpretation, deep learning methodologies demonstrate transformative capacity for 

expediting diagnostic pathways and personalizing neuro-oncological interventions. These systems establish 

adaptive diagnostic frameworks empowering clinicians to execute evidence-based decisions with 

unprecedented efficiency. Yet three persistent barriers—dataset heterogeneity, interpretability deficits, and 

computational scalability—necessitate dedicated solutions. Continuous methodological evolution positions 

DL architecture toward becoming indispensable, clinically embedded instruments for precision neuro-

oncology. 

While data variability and model interpretability present significant technical hurdles, a deeper 
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challenge in developing deep learning (DL) models for MRI-based brain tumor analysis is the pronounced 

scarcity of data for rarer tumor types. Widely utilized public datasets like BraTS predominantly feature 

gliomas, inadvertently marginalizing may other clinically important brain tumor categories. This inherent 

data imbalance critically undermines a model’s ability to generalize effectively across the diverse spectrum 

of brain tumors encountered in clinical practice. Consequently, a strategic imperative for the field involves 

actively expanding the breadth of available datasets to encompass a far wider variety of tumor pathologies. 

Federated learning emerges as a strategic response to the constraints of institutionally siloed medical 

imaging data. This paradigm enables collaborative model development without transferring sensitive patient 

scans, intrinsically preserving privacy while complying with healthcare regulations. Crucially, models 

trained on distributed datasets from multiple institutions exhibit enhanced robustness and clinical validity 

due to inherent population diversity. Nevertheless, substantial implementation barriers persist, including 

heterogeneous system interoperability, cross-institutional coordination complexities, and the demanding 

infrastructure requirements for managing decentralized data workflows. 

Self-supervised learning (SSL) methodologies integrated into vision transformers demonstrate 

significant potential to reduce annotation dependency in medical imaging. These approaches extract latent 

features from unlabeled MRI scans, potentially improving tumor detection performance by capturing 

intrinsic data relationships. Nevertheless, conclusive evidence of their efficacy demands comprehensive 

evaluation across diverse, clinically complex imaging cohorts to address domain-specific challenges. 

The integrity of medical imaging data fundamentally governs deep learning model reliability. Within 

this study, variations in MRI quality – including resolution limitations, artifacts (e.g., motion blur, Gibbs 

ringing), noise (e.g., Gaussian, Rician), and inconsistencies in acquisition protocols (e.g., differing pulse 

sequence parameters, field strengths) – demonstrably degraded tumor segmentation accuracy and 

classification performance. Empirically, these data-centric limitations emerged as primary constraints on 

model generalizability and clinical utility. Consequently, advancing the robustness of medical AI 

necessitates a dedicated research focus on enhancing data acquisition standards, establishing rigorous 

quality control frameworks, and developing robust pre-processing pipelines specifically designed to 

mitigate these inherent image quality variations prior to model training. 

In conclusion, deep learning demonstrates substantial efficacy in automating MRI-based brain tumor 

identification and segmentation, representing a critical evolution in diagnostic neuroimaging workflows. 

While persistent challenges—notably heterogeneity in multi-institutional data, limitations in dataset 

scale/diversity, and the opacity of complex model decisions—demand continued attention, emergent 

methodologies offer targeted pathways forward. Specifically, federated learning addresses data privacy and 

silo constraints, explainable AI (XAI) techniques enhance clinical trust through interpretable decision 

rationales, and self-supervised learning mitigates reliance on scarce expert annotations. Collective, these 

approaches provide a concrete framework for translating algorithmic potential into clinically robust, 

accountable tools. 

 
4. Conclusion 

This systematic review establishes that DL demonstrably enhances precision and workflow efficiency 

in brain tumor detection via MRI analysis. Key architectures—including CNNs, U-Net variants (notably 

nnU-Net), and Vision Transformers—have achieved validated performance in tumor segmentation and 

classification tasks. Critically, however, our analysis identifies institutional MRI data heterogeneity and 

insufficient dataset representativeness as primary barriers to model generalizability. To solve these 

constraints, we assert that: (1) curating multi-institutional datasets reflecting real-world demographic and 

technical diversity is imperative, and (2) federated learning architectures offer a clinically viable pathway 

to enhance model validity while ensuring data privacy. These approaches directly address scalability 

challenges in deploying DL system across diverse healthcare environments. 

Clinically, the persistent opacity of deep learning decision-making remains a critical barrier to adoption 

in medical imaging, raising justifiable concerns about diagnostic reliability. To bridge this trust gap, we 

must pioneer clinically grounded explainable AI (XAI) frameworks that enable physicians to scrutinize 

prediction rationales and error boundaries. While current XAI methods represent progress, our review 

identifies three imperative research trajectories: (1) enhancing visual saliency maps for radiological 

relevance, (2) developing quantitative metrics for interpretability validation in clinical trials, and (3) creating 

real-time explanations system compatible with PACS workflows. These advances are non-negotiable 

prerequisites for deploying clinically accountable DL tools that oncologists and radiologists can ethically 

endorse. 
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In synthesis. While significant implementation barriers persist, deep learning constitutes a strategic 

priority for advancing neuro-oncology practice. Its demonstrable improvements in glioma classification 

precision, surgical planning accuracy, and treatment response assessment efficiency necessitate focused 

efforts toward clinical deployment. Realizing this potential requires a concerted effort to resolve core 

challenges in model interpretability, multi-institutional validation, and seamless integration into 

neurosurgical workflows. 
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