
KOMPUTASI: JURNAL ILMIAH ILMU KOMPUTER DAN MATEMATIKA 

VOL. 23 (1) (2026), 80-88 p-ISSN: 693-7554, e-ISSN:2654-3990 

 

∗Corresponding author. E-mail address:rickymaulanafajri@uigm.ac.id 
Received: 23 December 2025, Accepted: 30 January 2026 and available online 31 January 2026 

DOI: https://doi.org/10.33751/komputasi.v19i2.5260  

 

80 

 

An Empirical Study of Temporal Graph Neural Networks for Dynamic 

Node Forecasting 
 

Ricky Maulana Fajri1, Tasmi2, Ni Wayan Priscillia Yuni Praditya3 

 

1,2Department of Computer System, Faculty of Computer and Natural Science, University of Indo 

Global Mandiri, South Sumatera, 30129, Indonesia 

3 Department of Information System, Faculty of Computer and Natural Science, University of Indo 

Global Mandiri, South Sumatera, 30129, Indonesia 

 

 

 

Abstract 

Abstract  temporal graph modeling has become increasingly important for understanding and forecasting 

the dynamics of complex systems that evolve over time. One of the central challenges in temporal graph 

learning lies in identifying graph neural network (GNN) architectures that can effectively capture both 

spatial dependencies and temporal dynamics. This study presents a comprehensive benchmarking 

analysis of widely used GNN architectures, namely Graph Convolution Network (GCN), GraphSAGE, 

Graph Attention Network (GAT), Chebyshev Networks (ChebNet), and Simplified Graph Convolution 

Network (SGC), each integrated with recurrent mechanisms for temporal modeling. The evaluation is 

conducted on the WikiMaths dataset, a large-scale temporal graph dataset representing user visits of 

mathematics-related Wikipedia articles. Experimental results demonstrate that the choice of graph 

convolution operator significantly impacts temporal forecasting performance, with GraphSAGE and 

ChebNet consistently exhibiting superior performance compared to other architectures. This work 

provides empirical insights into the strengths and limitations of established temporal GNN models, 

contributing to a clearer understanding of their applicability in dynamic graph forecasting tasks.  

 

Keywords: Graph Neural Network; Temporal Graph; WikiMath; Time-series Prediction; 

Benchmarking 

 

 

1. Introduction  

       The increasing availability of data generated by interconnected systems has led to growing interest in 

graph-based learning approaches. Many real-world phenomena, such as information diffusion[1], [2], user 

activity patterns[3]-[5], and relational dynamics in online platforms[6], [7], can be naturally represented as 

graphs which node attributes evolve over time. Traditional time-series models, while effective for independent 

sequences, are limited in their ability to incorporate relational dependencies among entities such as graph 

characteristics[8]. 

 Graph Neural Networks (GNNs) [9], [10]have emerged as a powerful framework for learning 
representations from graph-structured data. By leveraging neighbourhood aggregation, GNNs can capture 

complex relational patterns that are not accessible to conventional machine learning models[11]. However, 

most early GNN formulations focus on static graphs and are not designed to handle temporal dynamics 

inherent in many real-world applications[2], [9]. 

 To address this limitation, temporal extensions of GNNs [12], [13] have been proposed by integrating 

recurrent or temporal convolutional mechanisms. These models aim to jointly capture spatial dependencies 

encoded in the graph structure and temporal dependencies arising from evolving node features. Despite their 

growing adoption, there remains limited empirical understanding of how different graph convolution operators 

perform under identical temporal modelling settings. 

 Existing studies [14] - [16] often introduce novel architectures or evaluate a limited subset of models, 

making it difficult to draw general conclusions about the relative strengths of established GNN variants. 

Specifically, Han et al[14] proposed STGCN a spatio-temporal convolutional model that captures spatial 

dependencies among locations and temporal user behaviour. While, Pareja et al [15] introduced introduced 

EvolveGCN that achieve high performance on temporal link prediction by implementing recurrent GCN 

architecture which they named dynamic graph. Finally, Xu et al [16] proposed a framework that learns time-



 

 

81 

ware node embedding that show a more robust spatio-temporal generalization.  Moreover, Kazemi et al 

perform a  comparisons which frequently conducted under heterogeneous experimental settings, that obscures 

the true impact of architectural choices on performance[17]. Despite these advances, prior studies focus on 

specific tasks or model designs and do not provide a systematic empirical comparison of temporal graph neural 

networks for dynamic node forecasting.  

Motivated by these gaps, this study conducts a systematic empirical study of widely used GNN 

architectures within a unified temporal forecasting framework. Using the WikiMaths[18] dataset as a 

representative large-scale temporal graph, this work aims to provide empirical insights into how different 

neighbourhood aggregation strategies affect node-level temporal prediction accuracy. The remainder of this 

paper is organized as follows: Section 2 describes the dataset, experimental setup, evaluation protocol and 
presents the background of the study; Section 3 presents and discusses the empirical results; and Section 4 

concludes the paper with limitations and directions for future research 

 

2. Methods 

2.1 Datasets 

This study use Wikimath dataset [18], the dataset consists of a collection of important mathematics-

related articles extracted from Wikipedia. It was publicly released during the development of the PyTorch 

Geometric Temporal framework[18] to support research in spatiotemporal graph learning. In this dataset, each 

node corresponds to a Wikipedia page, while edges represent hyperlink connections between pages. The 

resulting graph structure is static, directed, and weighted, capturing the inherent relational structure among 

mathematical topics. 

Edge weights indicate the frequency of hyperlinks from a source page to a target page, reflecting the 

strength of their connection. The prediction target is the number of daily user visits to each Wikipedia page, 

recorded over a two-year period from March 16, 2019, to March 15, 2021. This temporal span yields 731 

consecutive time steps, enabling the analysis of long-term temporal dynamics in user attention across the 

graph. The WikiMaths dataset poses a node-level regression task, where the objective is to predict future node 

values based on historical observations and graph connectivity. This formulation enables the analysis of how 
temporal dependencies and graph topology jointly influence predictive performance. 

 

2.2 Datasets Cleaning and Preprocessing 

Prior to model training, the dataset is processed using the standard pipeline provided by the PyTorch 

Geometric Temporal framework. Temporal sequences are constructed using a fixed lag window, where each 

input snapshot contains observations from the previous 14 time steps. 

All node features are normalized to ensure numerical stability and faster convergence during training. 

No nodes or edges are removed, ensuring that the original graph topology is retained throughout the 

experiments.The dataset is then divided into training and test sets using a temporal split, where the first 50% 

of snapshots are used for training and the remaining 50% for testing. This split strategy prevents information 

leakage and reflects a realistic forecasting scenario.  

 

2.3 Graph Construction 

The WikiMaths dataset is modelled as a temporal attributed graph 𝐺𝑡 =  (𝑉, 𝐸, 𝑋𝑡 )   where 𝑉 represents 

the set of nodes, 𝐸 denotes the set of edges, and 𝑋𝑡 corresponds to node features at time step 𝑡. The edge 

structure encodes hyperlinks between Wikipedia articles and remains fixed across time. 

Each node is associated with a feature vector capturing historical activity patterns over the defined lag 

window. Edge weights, when available, are used to represent the strength of connections between nodes and 

are incorporated into graph convolution operations. 

This formulation enables the models to jointly exploit spatial dependencies (graph structure) and 

temporal dependencies (node feature evolution). The resulting graph representation serves as the input to the 
proposed temporal GNN architectures. 

 

2.4 Baselines 

To perform an empirical study of temporal graph neural networks, several widely adopted graph 

convolutional architectures are evaluated within a unified temporal forecasting framework. The selected 

models include GCN[9], GraphSAGE[8], GAT[19], Chebyshev Network (ChebNet)[20], and Simplified 

Graph Convolution (SGC)[21], each coupled with a recurrent graph convolutional unit to enable temporal 

dependency modelling. These architectures represent diverse neighbourhood aggregation strategies 

commonly used in graph learning literature. 

All evaluated models are implemented using a controlled and consistent experimental protocol, sharing 

identical hidden dimensions, learning rates, training epochs, and data splits. This standardized setup ensures 

a fair and unbiased comparison, allowing performance differences to be attributed solely to the architectural 

properties of the spatial convolution operators rather than to variations in optimization or hyperparameter 

tuning. 



 
82 

By benchmarking multiple graph convolution mechanisms under the same temporal modelling pipeline, 

this study systematically analyses the impact of different neighbourhood aggregation strategies on node-level 

temporal forecasting performance in dynamic graphs. 

 

2.5 Evaluation Metrics 

Model performance is evaluated using Mean Squared Error (MSE), which is a standard metric for 

regression based temporal forecasting tasks. Given a set of node-level prediction 𝑦̂𝑖,𝑡 

And corresponding ground truth 𝑦𝑖,𝑡 at the time step 𝑡, the MSE at time 𝑡 is defined as  

 

𝑀𝑆𝐸𝑡   =  
1

𝑁
 ∑

𝑁

𝑖=𝑡

 ( 𝑦̂𝑖,𝑡  −  𝑦𝑖,𝑡  )2 

 

(1) 

 

Where 𝑁 denotes the number of nodes in the graph. The overall test performance is obtained by averaging the 

MSE across all test time steps 𝑇. 

 

𝑀𝑆𝐸𝑡𝑒𝑠𝑡    =  
1

𝑇
 ∑ 𝑀𝑆𝐸𝑡   

𝑇

𝑡=1

 

(2) 

 

In addition to aggregate error metrics, temporal error profiles are analyzed to assess model stability and 

robustness over time. By examining the evolution of MSE across successive test snapshots, the ability of each 

model to adapt to non-stationary temporal dynamic can be evaluated.  

 

2.6 Background 

Graph Neural Networks (GNNs) generalize conventional neural architectures by explicitly modelling 

relational dependencies encoded in graph-structured data through message passing and neighbourhood 

aggregation. Consider a graph 𝒢 = (𝒱, ℰ), where 𝒱 denotes the set of vertices and ℰ represents the set of 

edges. The fundamental objective of a GNN is to learn latent node embeddings by iteratively aggregating 

information from each node’s local neighborhood. A generic node update operation at layer 𝑘 can be 

formulated as: 

 

𝐳𝑣

(𝑘+1)
= 𝜙(𝑘)  ( ∑ 𝜓(𝑘)

𝑢∈𝒩(𝑣)

 (𝐳𝑢
(𝑘), 𝐳𝑣

(𝑘) , 𝐞𝑢𝑣 )) 

(3) 

 

where 𝐳𝑣
(𝑘)

denotes the embedding of node 𝑣at layer 𝑘, 𝒩(𝑣)is the neighborhood of 𝑣, 𝐞𝑢𝑣represents optional 

edge features, 𝜓(⋅)is a message function, and 𝜙(⋅)denotes a learnable transformation followed by a nonlinear 

activation. 

Among early GNN variants, Graph Convolutional Networks (GCNs) introduce a spectral-inspired 

convolution operation that propagates and smooths node features over the graph topology. The propagation 

rule of a GCN layer is given by: 

 

𝐙(𝑘+1) = 𝜎  (𝐃̂−
1
2𝐀̂𝐃̂−

1
2𝐙(𝑘)𝐖(𝑘)) 

(4) 

 

where 𝐀̂ = 𝐀 + 𝐈denotes the adjacency matrix augmented with self-loops, 𝐃̂is the associated degree matrix, 

𝐖(𝑘)is a learnable weight matrix, and 𝜎(⋅)is a nonlinear activation function. 

To improve computational efficiency, Simplified Graph Convolution (SGC) removes intermediate 

nonlinearities and collapses multiple convolutional layers into a single linear transformation. Instead of 

stacking several GCN layers, SGC precomputes feature propagation using the normalized adjacency matrix, 

resulting in: 

 

𝐙̃ = (𝐃̂−
1
2𝐀̂𝐃̂−

1
2)

𝐾

𝐗𝐖 
(5) 

 

where 𝐾denotes the propagation depth and 𝐗is the input feature matrix. While this formulation significantly 
reduces training complexity, it may limit expressive power in graphs with complex structural patterns. 

Graph Attention Networks (GATs) further enhance message passing by introducing attention mechanisms 

that assign adaptive importance weights to neighboring nodes. The attention coefficient between nodes 𝑢and 

𝑣is computed as: 
 



 
83 

𝛽𝑢𝑣 =
exp (LeakyReLU (𝐚⊤[𝐖𝐳𝑢  ∥  𝐖𝐳𝑣]))

∑ exp 𝑘∈𝒩(𝑣) (LeakyReLU (𝐚⊤[𝐖𝐳𝑘  ∥  𝐖𝐳𝑣]))
 

(6) 

 

where 𝐚 is a learnable attention vector and ∥ denotes vector concatenation. This adaptive weighting 

mechanism allows GATs to focus on the most informative neighbors, improving representation quality in 

heterogeneous graphs. 

GraphSAGE extends GNNs to an inductive learning setting, enabling generalization to unseen nodes by 

sampling and aggregating a fixed-size neighborhood. The node update rule can be expressed as: 
 

𝐳𝑣

(𝑘+1)
= 𝜎 (𝐖(𝑘) ⋅ AGG({𝐳𝑢

(𝑘)
∣ 𝑢 ∈ 𝒩(𝑣)}))  (7) 

 

where AGG(⋅)denotes an aggregation operator such as mean pooling, max pooling, or LSTM-based 

aggregation. This inductive formulation enables scalable learning on large and evolving graphs. 

Finally, Chebyshev Networks (ChebNet) generalize spectral graph convolutions by approximating graph 

filters using Chebyshev polynomials of the Laplacian, enabling localized and computationally efficient 

filtering without explicit eigen-decomposition. The ChebNet convolution operation is defined as: 

 

𝐻(𝑙+1) = ∑ 𝑇𝑘

𝐾

𝑘=0

(𝐿̃)𝐻(𝑙)Θ𝑘
(𝑙)

 
(8) 

 

Where 𝑇𝑘(⋅)denotes the Chebyshev polynomial of order 𝑘, 𝐿̃ is the scaled graph Laplacian, Θ𝑘
(𝑙)

are learnable 

parameters, and 𝐾controls the size of the receptive field. By incorporating higher-order neighborhood 

information, ChebNet effectively captures multi-hop dependencies while maintaining computational 

efficiency. 

 

2.7 Experimental Setup and Hyperparameter Setting 

 All experiments were conducted on a workstation equipped with Intel Core I5 CPU, 16 GB of RAM 

and a Nvidia GPU with 4 GB of memory. The models were implemented in Python using the PyTorch and 

PyTorch Geometric libraries. To ensure a fair comparison, all GNN models were trained and evaluated under 

identical hardware conditions, dataset splits and optimization setting. All models shared a common training 
configuration. The Adam optimizer was used with a fixed learning rate, and all models were trained for the 

same number of epochs using identical batch sizes and activation functions. The hidden embedding dimension 

was kept constant across architectures to isolate the impact of model design. Model-specific hyperparameters 

were selected based on standard practices reported in prior studies and lightly adjusted to ensure stable 

convergence, without extensive hyperparameter tuning. Table 1 illustrates the main hyperparameter setting 

used for each model. 

Table 1. The model Hyperparameter Setting 

Model Hidden 

Dim 

Learning 

Rate 

Epochs Batch Size Model-Specific Setting 

GCN 64 0.001 200 32 2 Graph Convolution 
Layers 

GraphSAGE 64 0.001 200 32 Mean Aggregation 

GAT 64 0.001 200 32 4 Attention Heads 
ChebNet 64 0.001 200 32 Chebyshev order K=3 

SGC 64 0.001 200 32 Propagation Steps K=2 

 

3. Result and Discussion 

This section presents an extensive evaluation of the proposed temporal graph neural network (GNN) 

models on the WikiMaths datasets. The analysis focuses on training dynamics, temporal generalization, node-

level predictive behavior, error characteristics and overall model comparison. Five architectures are evaluated, 

namely GCN, GraphSAGE, GAT, ChebNet and SGC, each integrated with a recurrent graph convolutional 

units to model temporal dependencies.  

The experimental setup ensures a fair comparison across models by using identical training and testing 
splits, learning rates, and optimization strategies. Mean Squared Error (MSE) is employed as the primary 

evaluation metrics, as it effectively captures regression accuracy in a temporal forecasting task. The results 

are reported through both quantitative metrics and qualitative visualizations to provide comprehensive insight 

into model behavior. 

 

3.1. Training Loss Analysis 

Figure 1 illustrates the training loss curves for all evaluated models over 30 epochs. All models exhibit 

smooth and monotonic decreases in training MSE, indicating stable optimization and effective learning 



 
84 

dynamics. No signs of divergence or oscillatory behavior are observed, suggesting that the selected learning 

rate and optimizer are appropriate for the tasks. Figure 1 was generated from the training loss values recorded 

at each epoch during the learning process of the GCN, GraphSAGE, GAT, ChebNet, and SGC models. The 

loss values were computed during training using PyTorch and PyTorch Geometric, and the curves were 

visualized using Python’s Matplotlib library to illustrate the convergence behavior of each model. 

 
Figure 1. Training Loss analysis 

 GraphSAGE and ChenNet demonstrate the fastest convergence rates and achieve the lowest final 

training losses. This behavior indicates their strong capability to capture both local structural information and 

temporal patterns in the evolving graph. GAT also converges steadily but requires slightly more epochs, which 

can be attributed to the additional complexity introduced by the attention mechanism. 

 In contrast, SGC consistently show higher training loss values throughout the learning process. This 

outcome reflects the limited expressive capacity of simplified graph convolution, particulary in scenarios 

requiring rich spatial-temporal representations. Overall, the training loss analysis highlights the importance of 

expressive spatial encoders when combined with temporal recurrence.   

 

4.2. Test MSE Over Time 

 
Figure 2. Test MSE Over Time 

 Figure 2 presents the test MSE computed at each temporal snapshot, providing insight into the 

models’ generalization behaviour over time. All architectures exhibit similar temporal error patterns, with 

fluctuations corresponding to changes in the underlying dynamics of the WikiMaths interaction graph. These 

variations indicate that the dataset contains non-stationary temporal behaviour. 

GraphSAGE and ChebNet consistently maintain lower MSE values across most time steps, 

demonstrating robustness to temporal shifts and structural changes in the graph. GAT performs competitively 

but exhibits higher variance during certain intervals, suggesting sensitivity to abrupt changes in node 

interactions. 

SGC displays the highest error peaks and the largest temporal variability, particularly during periods 

of rapid change. This result suggests that simplified propagation mechanisms struggle to adapt to dynamic 
graph environments. Collectively, these findings emphasize the advantage of expressive neighbourhood 

aggregation for temporal generalization. 

Figure 2 was generated from the test Mean Squared Error (MSE) values evaluated at each time step 

for the GCN, GraphSAGE, GAT, ChebNet, and SGC models. The x-axis represents the test time steps and 

the y-axis denotes the corresponding MSE values, with the results computed using PyTorch and PyTorch 

Geometric and visualized using Python’s Matplotlib library to illustrate the temporal prediction performance 

of each model. 

 



 
85 

4.3. Prediction Vs Ground Truth Analysis 

Figure 3 compares the predicted and ground truth values for a representative node across the test 

horizon. All models successfully capture the overall temporal trend, indicating that the recurrent components 

effectively model long-term dependencies in the graph signal. 

 

 
Figure 3. Prediction Vs Ground Truth 

GraphSAGE and ChebNet closely follow the ground truth trajectory, including sharp increases and 

decreases. Their predictions align well with both the magnitude and timing of observed values, highlighting 

their strong node-level forecasting capability. GAT also performs well but occasionally exhibits minor 

temporal lag. 

In contrast, GCN and SGC tend to produce smoother predictions, leading to underestimation during 

high-variance periods. This smoothing effect suggests limited responsiveness to sudden changes in node 

behaviour. The qualitative comparison confirms that richer spatial representations lead to more accurate and 

responsive predictions. 

Figure 3 was generated by plotting the model prediction values and the corresponding ground-truth 
values at each test time step for the evaluated models. The x-axis represents the time steps, while the y-axis 

shows the node values ranging from −2 to 6, where the predictions were obtained from the trained models and 

compared directly against the true target values; all computations were performed using PyTorch and PyTorch 

Geometric, and the visualization was produced using Python’s Matplotlib library. 

 

4.4. Error Distribution Analysis 

Figure 4 shows the distribution of prediction errors for each model. The error histograms are centered 

around zero, indicating that none of the models exhibit systematic prediction bias. This observation confirms 

that the learned models are well-calibrated. 

GraphSAGE and ChebNet produce the narrowest error distributions, reflecting lower variance and 

more consistent prediction accuracy. The majority of their errors are concentrated near zero, suggesting 

reliable performance across different temporal contexts. GAT displays a slightly wider distribution but 

remains competitive. 

SGC exhibits the broadest error distribution with heavier tails, corresponding to its larger prediction 

errors observed in previous analyses. This result further supports the conclusion that simplified graph 

convolutions are less suitable for complex temporal graph regression tasks. 

 
Figure 4. Error Distribution Analysis 

 Figure 4 was generated from the prediction error values obtained by computing the difference 

between the model predictions and the corresponding ground-truth values at each test time step. The x-axis 

represents the prediction error ranging from -25 to 5, while the y-axis shows the frequency of errors, with all 

error values computed from the experiment which computed using PyTorch and Pytorch geometric. The error 

distribution is generated from Python Matplotlib library to analyze the spread and bias of prediction errors 

across models.  

 



 
86 

4.5. Model Comparison 

Figure 5 summarizes the mean test MSE achieved by each model, enabling direct quantitative 

comparison. GraphSAGE achieves the lowest mean test MSE, followed closely by ChebNet, confirming their 

superior generalization performance on the WikiMaths dataset. 

 
Figure 5. Model Comparison 

GAT and GCN achieve intermediate performance levels, balancing model complexity and predictive 

accuracy. While attention mechanisms enhance expressiveness, they do not consistently outperform inductive 

neighbourhood aggregation in this setting. These findings suggest that structural inductive bias plays a critical 

role in temporal graph learning. 

SGC yields the highest mean test MSE, reinforcing its limitations in modelling complex spatial-

temporal relationships. Overall, the model comparison demonstrates that expressive graph convolution 

operators are essential for accurate temporal forecasting. 

Figure 5 was constructed using the average test Mean Squared Error (MSE) values computed for 

each model, including GCN, GraphSAGE, GAT, ChebNet, and SGC, over the entire test period. The mean 

test MSE values were calculated from the model predictions and ground-truth targets using PyTorch and 

PyTorch Geometric, and the results were presented as a bar chart using Python’s Matplotlib library to facilitate 

a direct performance comparison among the models. 

 
4.6. Training Vs Test Performance 

Table 2. Training and Test Performance 

Model Train MSE 

(Final) 

Test MSE 

(Mean + 

Std 

GCN 0.59 ± 0.01 0.71 ± 0.03 
GraphSAGE 0.42 ± 0.02 0.53 ± 0.02 

GAT 0.51 ± 0.02 0.67 ± 0.03 
ChebNet 0.44 ± 0.01 0.54 ± 0.02 

SGC 0.64 ± 0.01 0.74 ± 0.03 

  

Table 2 summarizes the final training MSE and the average test MSE for each GNN architecture 

evaluated in this study. All experiments were conducted over 10 independent runs with different random seed, 

and the number of the table reports the test results correspond to the mean and standard deviation across these 

runs. As expected, all models exhibit higher error on the test set than on the training set, reflecting the 

challenge of generalizing to unseen temporal snapshots. 

 Amont the evaluated models, GraphSAGE and ChebNet demonstrate the smallest discrepancy 

between training and test performance, achieving test MSE values of 0.53 ± 0.02 and 0.54 ± 0.02 respectively. 

This limited generalization gap indicates strong robustness and minimal overfitting, suggesting that these 

architectures effectively capture transferable spatio-temporal patterns. In contrast, SGC exhibits the larger 

divergence between training and test MSE, with a test error of 0.74 ± 0.03, indicating reduced robustness 

when exposed to new temporal data. GCN and GAT shows intermediate performance, balancing 

representation capacity and generalization but with larger performance variability.  

 

4.7 Statistical Significance Test 

 To evaluate whether the performance differences reported in Table 2 are statistically significant, this 

study first examined the distribution of the test MSE values obtained from the 10 independent runs for each 
model. A normality test was conducted on the test MSE distributions to verify the applicability of parametric 

statistical testing. Based on this assessment, the distributions were found to be approximately normal, allowing 

the use of parametric tests for pairwise comparison. 

Subsequently, paired t-tests were performed on the test MSE results between models, as all 

architectures were evaluated on identical data splits and temporal settings. A significance level of 𝛼 =



 
87 

0.05 was adopted. The analysis indicates that the performance improvements of GraphSAGE and ChebNet 

over GCN, GAT, and SGC are statistically significant, while the difference between GraphSAGE and 

ChebNet is not statistically significant, suggesting comparable generalization performance. These results 
confirm that the observed differences in Table 2 are consistent across runs and not attributable to random 

initialization effects. 

 

4.8 Discussion 

 The empirical results consistently demonstrate that the choice of spatial graph convolution operator 

plays a critical role in temporal forecasting performance, even when the temporal modelling component is 

held constant. Architectures with expressive neighbourhood aggregation mechanisms, particularly 

GraphSAGE and ChebNet, achieve superior performance across training dynamics, temporal generalization, 

and node-level prediction accuracy. These findings align with prior studies suggesting that inductive 

aggregation [8], [16] and higher-order spectral filtering[12], [20] are effective in capturing heterogeneous 

structural patterns in dynamic graphs. In contrast, simplified propagation models such as SGC [17], [21], 

while computationally efficient, exhibit limited capacity to model complex spatial–temporal dependencies, 

leading to higher error variance and weaker generalization. 

The temporal error analysis further highlights the importance of robustness to non-stationary graph 

dynamics. Models that maintain low and stable test MSE across time steps are better suited for real-world 

applications where interaction patterns evolve unpredictably. GraphSAGE and ChebNet demonstrate 

resilience to abrupt changes in graph behaviour, suggesting that their aggregation strategies enable more 
adaptive representations. Attention-based models such as GAT show competitive performance but exhibit 

higher temporal variance, potentially due to sensitivity to fluctuating neighbourhood importance weights. This 

observation indicates that while attention mechanisms enhance expressiveness, they may require careful 

regularization in highly dynamic settings. 

From a broader perspective, these results reinforce the need for benchmarking-oriented studies in 

temporal graph learning. Many prior works introduce novel architectures without systematically comparing 

them against strong baselines under controlled conditions. By isolating spatial convolution effects within a 

unified temporal framework, this study provides clearer empirical evidence of architectural trade-offs that are 

often obscured in heterogeneous experimental designs. The findings suggest that, for snapshot-based temporal 

forecasting tasks, the inductive bias introduced by neighbourhood aggregation strategies may be as important 

as, or even more important than, temporal modelling complexity. This insight has practical implications for 

model selection and motivates further investigation into the interaction between spatial and temporal 

components in graph neural networks. 

 

5. Conclusion  

This study provides a systematic empirical evaluation of multiple established graph neural network 

architectures for node-level temporal forecasting on dynamic graphs. The experimental results consistently 
demonstrate that the choice of spatial graph convolution operator has a significant impact on predictive 

performance, even when all models share the same temporal modelling mechanism and training configuration. 

In particular, GraphSAGE and ChebNet exhibit superior generalization across training dynamics, temporal 

error profiles, and node-level prediction accuracy, while simplified propagation models such as SGC show 

clear limitations in capturing complex spatial–temporal dependencies. 

The primary contribution of this work lies in its benchmarking perspective. This study offers a 

controlled and reproducible comparison of widely adopted GNN variants under an identical temporal 

forecasting framework. By isolating architectural effects from confounding factors such as hyperparameter 

tuning and data preprocessing, the results provide empirical clarity on how different neighbourhood 

aggregation strategies influence temporal graph learning performance. This contributes to a more transparent 

understanding of model behaviour that is often obscured in architecture-driven studies. 

Despite these contributions, several limitations must be acknowledged. First, the evaluation is 

conducted on a single temporal graph dataset, which, while large-scale and representative, may not capture 

the full diversity of structural and temporal patterns observed in other domains. Second, the temporal 

modelling component is fixed across all experiments, preventing analysis of interactions between different 

spatial and temporal modelling strategies. Finally, the study focuses on predictive accuracy and does not 

explicitly evaluate computational efficiency or scalability under varying graph sizes. 

Future work may extend this benchmarking framework in several directions. Evaluations on 
additional temporal graph datasets from different application domains would improve the generalizability of 

the findings. Exploring alternative temporal modelling mechanisms, such as attention-based or continuous-

time approaches, could further clarify the interaction between spatial and temporal components. Additionally, 

incorporating efficiency and scalability analyses would provide practical guidance for deploying temporal 

GNNs in real-world systems. Together, these directions offer promising opportunities to deepen empirical 

understanding in temporal graph learning. 

 

 

 

 



 
88 

References 

[1] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of influence through a social network,” 

in Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data 

mining, 2003, pp. 137–146. [online] available at https://dl.acm.org/doi/10.1145/956750.956769 

[2] J. Leskovec, M. McGlohon, C. Faloutsos, N. Glance, and M. Hurst, “Patterns of cascading behavior in 

large blog graphs,” in Proceedings of the 2007 SIAM international conference on data mining, SIAM, 

2007, pp. 551–556 .   

[3] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,” IEEE Trans. Knowl. Data Eng., 

vol. 34, no. 1, pp. 249–270, 2020. 

[4] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bronstein, “Temporal graph networks 

for deep learning on dynamic graphs,” arXiv Prepr. arXiv2006.10637, 2020. 

[5] S. M. Alzanin and A. M. Azmi, “Detecting rumors in social media: A survey,” Procedia Comput. Sci., 

vol. 142, pp. 294–300, 2018. 

[6] S. Kumar, F. Spezzano, V. S. Subrahmanian, and C. Faloutsos, “Edge weight prediction in weighted 

signed networks,” in 2016 IEEE 16th international conference on data mining (ICDM), IEEE, 2016, 

pp. 221–230. 

[7] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale information network 

embedding,” in Proceedings of the 24th international conference on world wide web, 2015, pp. 1067–

1077. 

[8] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on large graphs,” Adv. 

Neural Inf. Process. Syst., vol. 2017-Decem, pp. 1025–1035, 2017. 

[9] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” arXiv Prepr. 

arXiv1609.02907, 2016. 

[10] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network 

model,” IEEE Trans. neural networks, vol. 20, no. 1, pp. 61–80, 2008. 

[11] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message passing for 

quantum chemistry,” in International conference on machine learning, Pmlr, 2017, pp. 1263–1272. 

[12] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson, “Structured sequence modeling with graph 

convolutional recurrent networks,” in International conference on neural information processing, 

Springer, 2018, pp. 362–373. 

[13] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural network: Data-driven 

traffic forecasting,” arXiv Prepr. arXiv1707.01926, 2017. 

[14] H. Han et al., “STGCN: a spatial-temporal aware graph learning method for POI recommendation,” in 

2020 IEEE International Conference on Data Mining (ICDM), IEEE, 2020, pp. 1052–1057. 

[15] A. Pareja et al., “Evolvegcn: Evolving graph convolutional networks for dynamic graphs,” in 

Proceedings of the AAAI conference on artificial intelligence, 2020, pp. 5363–5370. 

[16] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan, “Inductive representation learning on 

temporal graphs,” arXiv Prepr. arXiv2002.07962, 2020. 

[17] S. M. Kazemi et al., “Representation learning for dynamic graphs: A survey,” J. Mach. Learn. Res., 

vol. 21, no. 70, pp. 1–73, 2020. 

[18] B. Rozemberczki et al., “PyTorch Geometric Temporal: Spatiotemporal Signal Processing with Neural 

Machine Learning Models,” in Proceedings of the 30th ACM International Conference on Information 

and Knowledge Management, 2021, pp. 4564–4573. 

[19] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention 

networks,” Stat, vol. 1050, no. 20, pp. 10–48550, 2017. 

[20] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional Neural Networks on Graphs with 

Fast Localized Spectral Filtering,” in Advances in Neural Information Processing Systems, 2016. 

[21] F. Wu, T. Zhang, A. H. de Souza, C. Fifty, T. Yu, and K. Q. Weinberger, “Simplifying graph convolutional 

networks,” in 36th International Conference on Machine Learning, ICML 2019, Pmlr, 2019, pp. 11884–11894. 

[22] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional networks: A deep learning 

framework for traffic forecasting,” arXiv Prepr. arXiv1709.04875, 2017. 

 


