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Abstract

In gaining meaningful and actionable insights from complex and diverse multimedia content, many
studies have applied data analytics approaches—particularly data mining and machine learning—to
uncover patterns, relationships, and hidden knowledge. This systematic literature review consolidates
findings from 26 studies conducted between 2019 and 2024 (with supplementary data from early 2025)
on acquiring knowledge from multimedia content using data analytics and performance-boosting
techniques. Across domains such as social media, education, healthcare, e-commerce, and public safety,
most works integrate text—image or audio—video pairs and increasingly adopt attention-based
architectures and transformer models with early fusion strategies. To ensure comparability, each study’s
evidence is recorded by considering the reported performance improvement (A) over the authors’
baseline. In extracting these values, priority was given to the primary metrics—specifically Accuracy or
F1-score—that demonstrated the most significant gain compared to unimodal results. The most frequently
used metrics include Accuracy, the Fl-score, Precision, Recall, and the Area Under the Receiver
Operating Characteristic Curve (AUC), which provides a threshold-independent measure of classification
quality. The most common challenges identified include modality integration and alignment, data noise
and quality, limitations of datasets and benchmarks, and domain shift, with fewer studies reporting class
imbalance, computational cost, and interpretability or privacy issues. At the same time, promising
opportunities emerge in the development of standardized multimodal benchmarks, efficient transformer-
based fusion pipelines, and domain-robust learning. Overall, this review contributes a consolidated map
of modalities, methods, and metrics, a performance-gain table for quick comparability, and a practical
roadmap for guiding future research in multimodal sentiment analysis.
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1. Introduction

In the current era of digital transformation, multimedia content has become an integral part of daily
communication and information exchange. Platforms such as social media, video streaming services, and
news portals host diverse formats including text, images, videos, and audio. This rich environment plays a
critical role in shaping public discourse and supporting decision-making in domains like marketing,
healthcare, and public awareness [1]. Consequently, research has shifted from merely understanding public
opinion to broader objectives, such as acquiring complex knowledge and enhancing system performance in
multimedia environments [2]. While early efforts focused primarily on sentiment analysis [3], recent studies
have expanded toward multimodal understanding and advanced performance-boosting techniques [4]-[6].

However, integrating multiple data types into a single analytical approach introduces significant
challenges. Each modality—text, image, audio, and video—possesses unique semantic characteristics and
processing requirements [5], [6]. Furthermore, while datasets often include annotated labels or metadata
[7], many remain proprietary, creating barriers to reproducibility and generalization [8], [9]. Existing
methods frequently struggle with aligning these modalities, preserving contextual meaning, and managing
computational complexity. Additionally, the lack of standardized multimodal benchmarks complicates the
fair evaluation of results across different studies [10]-[12]. Overcoming these hurdles is essential for
making multimedia analytics more applicable in real-world contexts [13].
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Despite these challenges, various strategies have been developed, including early fusion, late fusion,
and hybrid approaches [14]-[16]. Early fusion combines features at the input level, while late fusion merges
outputs from separate models to reach a final decision. Recently, multimodal transformer architectures have
offered new ways to enhance cross-modal alignment and boost contextual understanding [17]. These
innovations contribute to performance-boosting, which aims to improve the accuracy and generalizability
of data processing [4]. Furthermore, techniques such as data pre-processing and dimensionality reduction
have gained attention for improving input quality and reducing computational load [18]. Ethical concerns
regarding interpretability and privacy have also emerged, encouraging the use of explainable AI [19], [20].

The motivation for this research stems from the fragmented nature of current multimedia analytics
studies. While many techniques exist, there is a lack of comprehensive synthesis regarding which methods
perform best across specific domains. Therefore, the purpose of this systematic literature review is to
synthesize studies from the last decade to identify commonly used techniques, datasets, and performance-
enhancing methods. The novelty of this work lies in its specific focus on the intersection of knowledge
acquisition and performance-boosting strategies, providing a roadmap for future applications.

This review aims to address three primary objectives: first, to investigate the current state of multimedia
research in acquiring knowledge through data analytics; second, to evaluate the specific challenges of
applying performance-boosting techniques—specifically focusing on multimodal fusion strategies (early,
late, and hybrid), attention-based transformer architectures, and cross-modal alignment methods; and third,
to explore future opportunities for more effective multimedia integration. By providing a comprehensive
synthesis of trends and gaps, this study supports the development of more reliable and transparent
multimedia systems for real-world use.

2. Methods

The study adapts a Systematic Literature Review (SLR) approach to analyze existing research on
knowledge acquisition through data analytics and performance-boosting techniques in multimedia content.
The SLR method provides a structured and rigorous framework for reviewing and synthesizing evidence from
diverse studies. By focusing on approaches that utilize multiple modalities—such as text, images, audio, and
video—the SLR enables a comprehensive understanding of the techniques, trends, and challenges in acquiring
insights from complex multimedia environments [14].

The SLR methodology helps identify research objectives and opportunities for future studies through a
structured and repeatable process [15]. This method also facilitates the use of structured search strategies,
inclusion and exclusion criteria, and systematic data extraction and synthesis [16].

To ensure clarity and transparency in study selection, this research applies the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines as a reporting standard. PRISMA facilitates
the structuring and presentation of the review process, especially during the stages of identification, screening,
determining eligibility, exclusion, and inclusion of a study. A PRISMA flow diagram is used to visually
summarize the steps taken in selecting relevant studies, including the number of the records that were found,
screened, excluded, and retained for analysis. This ensures a transparent and well-documented process aligned
with best practices in systematic reviews [18].

This approach addresses the research question outlined in SECTION 1: Introduction, which aim to
investigate the current research landscape on multimedia content, examine challenges in performance-
boosting techniques, and identify opportunities for future applications in knowledge extraction through data
analytics.

To visually illustrate the six steps of the Systematic Literature Review (SLR) methodology, a modified
version of the framework presented by Sauer and Seuring (2023) is used. The SLR process has six stages:
defining research questions, developing a search strategy, screening studies (applying inclusion and exclusion
criteria), extracting data, synthesizing and reporting findings [19]. These stages are tailored to meet the
objectives of reviewing knowledge acquisition techniques in multimedia content.

A. Defining Research Questions

To guide this review, the following Research Question (RQs) were developed:

e RQI1: What is the current state of research across multimedia content (text, images, audio, and video)
in acquiring knowledge through data analytics?

e RQ2: What are the challenges in applying performance-boosting techniques in data analytics for
multimedia content?

e RQ3: What are the future opportunities in acquiring knowledge through data analytics and
performance-boosting techniques on multimedia content?

These questions ensure a structured and targeted review of the literature. Similar to the review conducted
by Xu, Chang, and Jayne [20], the formulation of precise research questions helps to surface key
methodologies, innovations, and limitations across studies. Their work emphasizes challenges such as
modality integration and data heterogeneity, which this review also seeks to address.
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B. Developing the Search Strategy

The search strategy was developed to systematically address the three Research Questions (RQs) by
constructing a precise Boolean search string. For RQI1, the queries explored techniques for acquiring
knowledge from diverse modalities using terms such as “data analytics” and “knowledge extraction.” For
RQ?2, the focus shifted to challenges and performance-boosting strategies using keywords like “fusion
techniques,” “transformers,” and “data preprocessing.” For RQ3, the keywords targeted future trends and
emerging opportunities. To ensure reproducibility, the final Boolean query applied was:

("multimodal" OR "multimedia content") AND ("data analytics" OR "machine learning" OR "fusion
techniques") AND ("performance boosting" OR "transformer")

To guarantee high-quality evidence, the search sources were expanded beyond general repositories.
IEEE Xplore, ACM Digital Library, and ScienceDirect were selected as the primary bibliographic databases
due to their prominence in computer science and applied multimedia analytics. Google Scholar was utilized
for snowballing relevant citations, while ResearchGate served strictly as a supplementary source for accessing
full-text preprints. Searches were restricted to the 2019-2024 publication window, with 2025 works included
only when highly relevant as supplementary evidence.

The comprehensive literature search was conducted between August and November 2025, with the final
query execution on November 8, 2025. Following the initial identification of records, deduplication was
performed to remove identical entries. Regarding the screening protocol, as this is an individual study, the
selection process was performed by the primary author. To guarantee validity and minimize selection bias in
the absence of a second reviewer, a strict two-stage evaluation process (intra-rater reliability) was applied:
first, adhering rigidly to the inclusion criteria during the title and abstract screening, and second, re-evaluating
a random sample of excluded papers to prevent accidental omissions before the final full-text assessment.

C. Screening Studies

Inclusion criteria:

e Studies focused on knowledge acquisition from multimedia content using data analytics (e.g.,
machine learning, data mining) or performance-boosting methods (e.g., fusion, transformers).
Multimodal input (>2 modalities: text, image, audio, video, or sensor/tabular streams).
Clear methodology with reproducible evaluation metrics (e.g., Accuracy, F1 Score, Area Under the
Receiver Operating Characteristic Curve (AUC)).

e Peer-reviewed and accessible full text.

o Published between 2019-2024 (global scope, no geographic restriction).

Exclusion criteria:

Purely unimodal studies.

Non-peer-reviewed or inaccessible papers.

Inadequate methodological detail or missing evaluation.

Duplicate conference/journal versions (the more complete version retained).

Quality Assessment (QA): To address the requirement for quality appraisal and risk-of-bias assessment, each
study was evaluated based on three technical pillars:

1. QA1 (Dataset): Does the study provide a clear description of the dataset used?

2. QA2 (Method): Is the performance-boosting strategy (e.g., fusion or architecture) clearly defined?

3. QA3 (Comparison): Does the study compare its results against standard baselines or other methods

using clear metrics?

Only studies satisfying at least two criteria were included to ensure high evidence strength across
heterogeneous domains. As this is an individual study, the selection process was performed by the author
using a strict two-stage intra-rater reliability process—consisting of initial screening followed by a re-
evaluation of candidates after a set interval—to minimize selection bias and ensure consistency.

D. Extracting Data

Data extraction included author(s), publication year, study objectives, data analytics techniques used (e.g.,
machine learning, data mining), modalities analyzed, performance-boosting strategies (e.g., fusion,
transformers), evaluation metrics (e.g., accuracy, Fl-score), key insights, and challenges. Emphasis was
placed on identifying how studies addressed knowledge acquisition and evaluated their methodologies.
Microsoft Excel was used to organize and manage this information. These metrics are commonly used to
assess model effectiveness, particularly in evaluating classification performance across different modalities.

The selection process is visualized in Figure 1, using a PRISMA flowchart to depict the number of studies
screened, excluded, and included.
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Identification of new studies via databases and registers

e Records removed before screening:
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k= Registers (n = 230) tools (n=0)
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New studies included in review
g n=0)
= Reports of new included studies
£ (n =26

Figure 1. PRISMA 2020 flow diagram showing the identification, screening, eligibility, and inclusion of
studies in this review (adapted using the PRISMA Flow Diagram tool)[51] Haddaway et al., 2022.

Selection Results Narrative As illustrated in the PRISMA flow, the systematic selection process yielded the
following results:

e Identification: A total of 233 records were identified (230 from registers and 3 from databases).
Before screening, 55 records were removed (35 duplicates and 20 for other specific reasons), leaving
175 records for initial assessment.

e Screening and Retrieval: From the 175 records screened by title and abstract, 102 were excluded. Of
the 73 reports sought for retrieval, 19 could not be retrieved as full texts.

o Eligibility and Exclusion Reasons: 54 reports were assessed for eligibility. During this phase, 28
reports were excluded with specific justifications: 12 focused on a single modality, 9 were published
before the 2019 threshold, and 7 lacked empirical data or sufficient methodological detail.

e Included: After applying the Quality Assessment (QA) criteria, 26 studies were finalized for
inclusion in the review.

Reporting baselines and A. In the study table we report each paper’s performance-boosting technique and
its improvement (A) over the paper’s own baseline, measured on the same dataset/split and metric (e.g.,
Accuracy, F1 Score, Area Under the Receiver Operating Characteristic Curve (AUC), AP, BLEU). Baselines
in the included studies typically refer to unimodal models (text-only, image-only), unfused/late-fusion
variants, or no-pretraining versions. When authors did not publish a numeric improvement, we record a
qualitative gain and mark it
3. Result and Discussion

A.  Overview of Selected Studies

This section summarizes the empirical findings from the multimodal analytics literature relevant to our
title and RQs. Across varied domains (social media/politics, marketing, education, health, finance, public
safety), studies typically combine text—image or text—video (often with audio/transcripts) and employ deep
learning with attention or transformer-based fusion to acquire knowledge from multimedia data. In general,
multimodal models outperform unimodal baselines, especially when fusion explicitly aligns signals (e.g.,
cross-attention/gating) and when performance-boosting steps (preprocessing, knowledge augmentation, or
hybrid fusion) are applied. The answers to RQ1-RQ3 in Sections B—D are based on this consolidated evidence.
In Table 1, “Model Method” refers to each paper’s core multimodal pipeline (modality encoders + fusion),
while “Performance Boost” denotes any targeted enhancement relative to that paper’s baseline (e.g., cross-
attention, hybrid fusion, pretraining). Where available, we report A as the improvement over the baseline on
the same dataset/metric; n/r = no numeric A reported. Table 1 therefore provides a compact view of
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modalities/datasets, model methods with their performance boosts (and A), evaluation metrics, key findings,
and the challenges addressed.

To ensure comparability across studies, performance improvements (A) are discussed using task-
appropriate evaluation metrics. For classification tasks, Macro-F1 is prioritized to address potential class
imbalances, while AUC is reported specifically for clinical or medical classification scenarios to ensure
diagnostic rigor. Regression-based outcomes, such as engagement predictions, are analyzed separately using
RMSE or MAE. To further control for heterogeneity, studies are categorized into distinct "Task Families"
(e.g., Medical, Social Integrity, and Behavioral Analysis). As a result, performance gains are interpreted
within comparable task and metric categories rather than being aggregated across fundamentally different
evaluation regimes.

To control heterogeneity across fundamentally different objectives and evaluation regimes, the included
studies are grouped by task family, as summarized in Table 1. Performance comparisons and qualitative trends
are therefore discussed within each task family—such as sentiment and affect analysis, safety and harmful
content detection, medical and health analytics, political discourse, and recommender systems—rather than
generalized across tasks with distinct goals and metrics. This categorical organization ensures that reported
performance-boosting strategies are interpreted within their specific technical and application contexts,
leading to more reliable and nuanced conclusions.

Table 1. Summary of the 26 included studies.
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reported. Metrics: Accuracy, F1 Score, Precision, Recall, AUC, AP, BLEU, RMSE, MAE, UAR, NDCG.

Table 1 shows that explicit reporting of computational efficiency remains limited in the multimodal
analytics literature. Only a subset of studies—primarily those involving transformer-based architectures, real-
time systems, or safety-critical applications—provide information on resource requirements, inference speed,
or computational cost. Most studies predominantly emphasize accuracy-oriented evaluation metrics, with
limited discussion on efficiency-related trade-offs. This observation highlights an open research opportunity
for future multimodal studies to more systematically balance performance improvements with computational
efficiency and resource constraints. Furthermore, all reported performance improvements (A) are explicitly
traced back to the primary benchmark results of the cited studies, as indicated in the 'Evidence' metadata
within Table 1, to ensure the validity and traceability of the comparative analysis.

B. Addressing RQ1 — Current State of Research in Multimodal Data Analytics

To provide an overview of how studies combine data types, Figure 2 summarizes the modality
combinations (text, images, audio, video) used across the included works in our corpus. The distribution
reflects the practical formats most common in real-world content (e.g., posts, memes, short videos) and is
derived directly from the studies we reviewed.
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MODALITY COMBINATIONS

IMAGE + TEXT + VIDEO
AUDIO + TEXT
AUDIO + TEXT + VIDEO
TEXT + VIDEO

AUDIO + VIDEO

IMAGE + TEXT

Figure 2. Modality combinations used across included studies (text/image/audio/video).

Counts include only combinations among Text, Image, Audio, and Video. One study uses an additional sensor (Image +

LiDAR) and is excluded from this figure ([40]).

Figure 3 illustrates the distribution of modality combinations used in the 26 selected studies. A majority

of recent works leverage multiple data types, often pairing two or more of text, images, audio, and video,
depending on the application. The most common modality pairings observed are:

Text + Image (12 Studies): This is the most frequent combination, for about twelve using it. It appears
frequently seen in social media and e-commerce statistics, where posts or reviews includes both textual
captions with pictures. Examples include the detection of sarcasm on Twitter [30], the identification of
hate speech and meme propaganda [34,35], multimodal recommendation systems that use images in
product reviews [39,46], and social media engagement analysis on postings that contain images [47].
These studies demonstrate how combining textual and visual cues can enhance classification precision
and prediction quality, particularly for tasks involving content understanding when text is contextualized
by images and vice versa.

Text + Video + Audio (3 Studies): About three studies combine textual information with video content,
frequently including spoken audio or video transcripts. This modality mix is natural for any video-based
content that can be transcribed or annotated with text. For instance, several works on video analysis
include transcripts or metadata as a text modality: a multimodal sentiment analysis model processes
spoken video opinions using transcripts plus audio and visual signals [28], and political debate analysis
uses video (visual gestures) plus audio and prosody with text transcripts to categorize aggressive or
argumentative speaking styles [27, 42]. In the social media domain, TikTok video analytics similarly
merge video attributes with textual captions or sentiment metadata [44,45]. Combining text and video
enables these models to capture both what is being said or written and visual events, which is crucial for
tasks like sentiment understanding [28] or stance classification in speeches [42].

Audio + Video with no text (5 Studies): There are 5 studies focus purely on audio-visual content without
an explicit text component. These typically address scenarios where spoken or environmental sounds
and visuals together define the task. Examples include detecting violence in surveillance footage by
fusing CCTYV video and ambient audio [31], emotion recognition from facial expressions and vocal tone
in video clips [33], and deepfake detection on videos by checking consistency of lip movements and
voice [36]. The temporal synchronization of audio and video is crucial in these situations; the models
use synchronous cues (such as a sound and a matching motion) to increase detection accuracy compared
to utilizing only one modality. An audio-visual model for deceit or emotion, for example, might detect
tiny clues that a single modality could overlook (such as a tense voice combined with nervous facial
expressions) [33].

Text + Audio (2 studies): A smaller subset of studies uses this pairing, typically in the analysis of spoken-
language material when the transcript and voice signal are both useful. One example is a call center
performance analysis, which combines call audio features with the text of transcripts to predict customer
service outcomes [29]. Another is a speech emotion dataset where transcribed words are fused with
acoustic features to classify emotions [41]. These studies demonstrate that textual transcripts, which
capture semantic information, enhance raw audio, which captures prosody and intonation, producing
more accurate results than either one alone [29,41].

Text + Video (2 studies): This pairing occurs in specific situations where textual information is directly
connected to visual material. Studies have used text—video fusion to understand and predict social or
communicative outcomes. For example, in political debate analysis a model can take video of speakers
(for gestures and demeanor) together with the transcribed speech text to determine the speaker’s stance
on issues [42]. Similarly, another work examines user engagement with short news videos on social
media by looking at the video content alongside textual elements like titles or descriptions (e.g., to predict
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likes and shares on TikTok) [45]. Essentially, when text and video are combined, computers are able to
ground language in visual evidence (or vice versa), which is crucial for interpreting narrative or high-
level context in multimedia information.

e Image + Text + Video (1 study). This setting appears in social-video analytics where the footage (video)
is complemented by on-screen graphics/thumbnails or frames (image) and captions/titles/ASR
transcripts (text) to capture both the narrative and its visual framing [50]. The typical pipeline encodes
video frames (e.g., 2D/3D CNN or ViT-based video encoder), extracts key images (thumbnail/overlay)
with a vision backbone, and represents text via a transformer; these streams are then fused—often with
cross-attention or co-attention—to align what is said with what is shown and how it is visually packaged
[50]. This tri-source design is useful for tasks like stance or credibility assessment, sentiment/affect
inference, or engagement prediction, where thumbnails/overlays and wording can prime audience
perception beyond the raw footage [50]. Reported evaluations use Accuracy/F1 (for classification) or
MAE/RMSE (for engagement regression), with tri-modal fusion outperforming any two-stream ablation,
indicating complementary signal across the three channels [50]. Summary: rare but valuable when
titles/captions and visual branding (images) jointly shape how the underlying video is interpreted [50].

Image + LiDAR (1 study): One remarkable outlier combined camera imagery with LIDAR sensor data for
3D perception tasks [40]. LIDAR (Light Detection and Ranging) provides depth information as point clouds,
which complements the RGB visual information from cameras. Notably, Figure 2 does not include this
specific combination because LiDAR 1is not one of the four fundamental modalities in RQ1 (Text, Image,
Audio, Video). However, it represents an important multimodal case outside the core scope, underlining how
additional sensors can further enhance vision-based analysis.

Overall. The corpus is dominated by Text + Image, followed by Audio + Video; Text + Video and Text +
Audio appear in niche speech/video settings, while tri-modal (Audio + Text + Video) and Image + Text +
Video are rare but valuable for richer social-video contexts. This distribution aligns exactly with Figure 3 (12
+5+2+3+2+1=25; LiDAR case excluded).

To complement the modality view, Figure 3 reports the modeling techniques and fusion strategies most
frequently adopted (e.g., transformer-based models with attention, early/feature-level fusion, late/score-level
fusion, classical baselines). These counts are compiled from the same set of studies and highlight the current
shift toward attention-mediated cross-modal learning.

Most-Used Modeling Techniques & Fusion
Strategies

Classical ML pipelines (SVM/RF + hand-...
Late fusion (decision-level)

=20

a7

Early fusion (feature-level) [INNEGSHEN

Hybrid fusion (multi-level) | INNEGNGGG
12

Transformer-based multimodal (cross-...

Figure 3. Distribution of modeling techniques/fusion strategies in the 26 reviewed studies. Counts indicate
technique mentions; one paper may use multiple techniques.

The analytical techniques for fusing and learning from multimodal data have developed in sync with the
variety of modality combinations. The most popular methods employed in the studies are broken down in
Figure 3, which includes both traditional and contemporary deep learning techniques. While basic early/late
fusion and conventional algorithms play a reduced role, there is a clear trend toward deep learning models
with sophisticated fusion mechanisms, particularly transformers and attention-based architectures. Key
approach categories include:

e Transformer-Based Models (cross-/co-attention) — 12 studies: Roughly half of the surveyed studies
employ transformer architectures or heavy attention mechanisms as the core of their multimodal models.
The rise of transformers is apparent in tasks like vision-language understanding and video analysis. For
example, cross-modal Transformer networks are used to align video, audio, and text streams for sentiment
prediction, enabling state-of-the-art performance without manual alignment [28]. Likewise, several text—
image models leverage pre-trained transformer language encoders (BERT/RoBERTa) alongside CNN or
ViT image encoders, and then apply attention-based co-fusion layers to blend modalities [30,39,46]. In a
medical context, one study built a transformer that attends between X-ray features and clinical data,
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outperforming either modality alone [26]. The prevalence of transformers reflects their power in capturing
complex cross-modal relationships; as one survey notes, there is a “clear trend toward transformer-based
vision—language models” in recent multimodal research. Overall, approaches that integrate modalities via
learned attention (e.g. co-attention in [30,39], or CLIP’s dual-transformer embeddings in [49]) are now
common, indicating that the field has embraced architectures capable of deeper feature interaction and
alignment across data types.

e Late Fusion Approaches (Decision-level) — 4 studies: Several studies still use a late fusion strategy
(decision-level fusion), wherein each modality is processed largely independently and the outputs are
combined at the end (e.g., via weighted voting or a final classifier). About 4 of the works follow this
pattern. For instance, a call analytics model trains separate classifiers on audio and on text, then merges
their prediction probabilities to yield the final performance score [29]. An emotion recognition framework
similarly runs parallel pipelines (one on speech audio features, one on transcript text using BERT) and
then fuses the predicted emotion probabilities to make a final decision [41]. In another case, researchers
fine-tuned separate transformers for audio (wav2vec2) and video (ViViT) streams, and experimented with
simply averaging their outputs versus dynamically weighting them at inference [33]. The appeal of late
fusion is its modularity — each modality’s model can be optimized on its own — and indeed it often serves
as a baseline or fallback due to its simplicity. However, late fusion inherently limits cross-modal
interaction during training. The reviewed studies generally find that while late fusion improves over single-
modality results [29,41], it can be outperformed by more integrated fusion methods that learn the interplay
between modalities (e.g., attention-based fusion often yields higher gains).

o Early (Feature-Level) Fusion — 5 studies: In a few cases, an early fusion or feature-level merging is used,
meaning the raw features from different modalities are combined into a joint representation before feeding
into a model. Early fusion tends to appear in domains where modalities are naturally aligned or of
commensurate type (often sensor fusion tasks). A prime example is autonomous driving perception: one
study projects 3D LiDAR point cloud features and 2D image features into a common space and fuses them
early in a unified network to improve object detection in self-driving cars [40]. Another system for driver
monitoring concatenates facial feature vectors (from video) with vehicle telemetry readings, feeding the
union into a classifier that detects drowsiness [37]. In the surveillance violence detection model, audio and
optical-flow features are mapped into the visual feature space and jointly analyzed as one feature set [31].
These early fusion designs allow the model to learn cross-modal correlations from the very beginning
(e.g., linking a sudden noise with a corresponding frame pattern in [31]). The downside is that early fusion
requires careful preprocessing to align modalities in time/space and handle different feature scales. It is
therefore used sparingly, but when the data synchronization is straightforward (as in sensor data or tightly
coupled audio-visual events), early fusion can effectively capture multimodal patterns without needing
separate model branches.

e Hybrid fusion (multi-level) — 7 studies: Hybrid systems blend modalities at more than one stage: they
first let features interact inside the network (feature-level or intermediate fusion), then stabilize predictions
by blending per-modality outputs at the end (decision-level). In practice, this design is popular in audio—
visual safety/affect settings where one stream is often noisy or missing; feature fusion injects cross-modal
cues early, while the final score blend keeps the model robust when, say, audio drops out or faces are
occluded [31], [33]. Empirically, hybrid pipelines tend to outperform single-stage early/late baselines with
only modest added compute, making them attractive when data are limited or latency matters. Studies
typically report clearer gains in F1/Accuracy and more stable performance under perturbations, supported
by ablations that compare feature-only vs score-only vs hybrid fusion [31], [33]. Takeaway: Hybrid fusion
offers a practical, high-yield middle ground—it captures meaningful cross-modal interactions while
preserving the modularity and resilience practitioners need for real-world deployment.

e C(lassical ML pipelines (SVM/RF + hand-crafted features) — 2 studies: Classical approaches appear
sparingly and mainly as baselines or when signals are highly heterogeneous. Each stream is hand-
engineered (e.g., MFCC/prosody, LBP/HOG, physiological features) and classified with SVM/RF, with
final decisions aggregated at score level [32]. They remain data-efficient and interpretable, but generally
trail deep/attention-based fusion on accuracy and adaptability. Takeaway: useful for comparison or
constrained setups, yet not the mainstream choice today.

In summary, multimodal analytics now favors image + text and audio + video pairings with attention-based
fusion; across domains these consistently beat unimodal baselines (e.g., X-ray + clinical AUC 0.77 [26]; image
+ text 96.5% vs 93%/41% [43]; corroborated by [29], [49]), supporting learned cross-modal attention as the
most effective path for knowledge extraction [50].

C. Addressing RQ 2 Challenges in Applying Performance-Boosting Techniques

When examining the 26 selected studies, several recurring challenges emerged that limit the effective
application of performance-boosting techniques in multimedia analytics. These are summarized in Figure 5,
which counts challenge mentions (a single study may report more than one challenge). The figure shows
modality integration and alignment as the most frequently reported obstacle (12 studies), followed by data
noise and quality issues (10), dataset and benchmark limitations (7), domain shift and generalization (6), class
imbalance (3), and less frequently model complexity/compute cost (2) and interpretability/privacy (2).



33

CHALLENGES

M Challenges
INTERPRETABILITY / PRIVACY
MODEL coMPLEXITY /.. HIFIR
CLASS IMBALANCE
poMAIN sHIFT /... INNEGNIGINGGEGEE
DATASET / BENCHMARK ... IINNIININIENNE
DATA NOISE / QUALITY ISSUES

MODALITY INTEGRATION & ... VI

Figure 5. Distribution of reported challenges in applying performance-boosting techniques across the 26

reviewed studies.
Counts represent challenge mentions rather than unique studies; one study may contribute to multiple categories, so totals exceed N.

Modality Integration & Alignment (n=12): The most common challenge concerns how different
modalities can be meaningfully combined. Aligning text with images, or audio with video frames, is rarely
straightforward. For instance, in debate analysis [27], [42], transcripts often did not match the timing of
gestures, while in video opinion mining [28], the prosody of speech sometimes contradicted visual cues.
Similarly, hate speech detection in multimodal memes [34], [35] and product review classification [46],
[49], [50] showed that captions often drift semantically from images. Without explicit attention-based
alignment layers, these mismatches degrade accuracy. Performance-boosting models are only effective if
they can capture the true relationships between signals, which makes alignment one of the most persistent
and technical obstacles.

Data Noise and Quality Issues (n=10): Noisy signals are the second-largest barrier. Real-world
multimedia data—especially from social media—is messy: images blurred or compressed, audio with
heavy background noise, and text full of slang or sarcasm. In call center analytics [29], automatic speech
transcripts were riddled with errors, while in speech emotion recognition [41], poor recording conditions
limited acoustic feature reliability. Social media datasets [45], [46], [48]-[50] also highlight that low-
quality content reduces model robustness. Performance-boosting techniques like transformers often
amplify these errors unless paired with noise filtering, confidence-based weighting, or hybrid fusion that
prevents weak signals from dominating. Thus, improving data quality is as important as designing
sophisticated models.

Dataset and Benchmark Limitations (n=7): Another key issue is the lack of standardized, large-scale
multimodal datasets. TikTok engagement studies [44], [47] collected their own data, making results
incomparable with others. Broader reviews [49], [50] argue that without shared benchmarks, researchers
risk overfitting to small datasets, reporting inflated results that do not generalize. The absence of unified
datasets and evaluation splits prevents performance-boosting methods from being properly benchmarked,
leaving open the question of which techniques truly work best across domains.

Domain Shift and Generalization (n=6): Even when boosting works on a dataset, performance often
drops in new contexts. Debate analytics [27] and social media studies [44], [46], [48], [50] show that
models trained on one platform or time period underperform elsewhere due to changing vocabulary,
formats, or cultural signals. This makes generalization a fundamental challenge. True performance
boosting requires not only better in-domain scores but also robustness across domains, which is rarely
demonstrated in current work.

Class Imbalance (n=3): Imbalance was reported in studies like [29], [41], [44], where majority classes
dominated predictions. For example, positive sentiment is overrepresented compared to rare negative or
harmful content. If only Accuracy is reported, improvements look strong while rare classes are missed.
This is why many works rely on F1-score, Precision, and Recall to evaluate fairness of improvements.
Addressing imbalance is crucial to ensure that boosting reflects real advances rather than majority-class
bias.

Model Complexity and Compute Cost (n=2): Although less frequently mentioned, computational cost
is a real barrier. Transformer-based models [31], [33] improved performance but were too heavy for
deployment, requiring large memory and long training times. Some studies explored distillation or late-
fusion fallbacks, but in practice, high cost means the “boost” is not always worth the trade-off.
Performance-boosting techniques that cannot scale or deploy easily risk remaining academic exercises
rather than practical tools.

Interpretability and Privacy (n=2): Finally, studies like [32], [45] emphasize that interpretability and
privacy constraints slow adoption. Deception detection with bio signals [32] raises sensitive ethical issues,
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while TikTok analytics [45] struggles with user privacy. Even if performance is boosted, opaque models
or privacy risks make real-world application difficult.

To complement these findings, Figure 6 shows the evaluation metrics reported across the studies.
Accuracy remains the most common (18 studies), but many works also reported F1 (11), Precision (7), Recall
(6), and AUC (3).

Evaluation Metrics

20 Accuracy; 18

15
F1-score; 11
10 o
Precision; 7 Recall; 6
5 AUG; 3
O .
Accuracy Fl-score Precision Recall AUC

Figure 6. Distribution of reported challenges in applying performance-boosting techniques across the 26
reviewed studies.

These metrics are not just formalities. They directly reflect the challenges above. Accuracy alone can be
misleading under class imbalance or noisy data, as seen in [29], [41], [44]. F1 and Recall highlight whether
models capture minority or hard-to-detect cases, making them essential when imbalance exists. AUC, used in
clinical or probabilistic tasks [26], offers threshold-free evaluation that is more robust under skewed data. By
expanding beyond Accuracy, researchers ensure that reported “boosts” are genuine and reliable, not artifacts
of dataset bias. In other words, the shift in metrics is the field’s practical way of coping with the barriers that
make performance boosting so difficult.

In conclusion, the analyzed studies demonstrate that improving multimedia analytics performance requires
not only better architecture design but also the removal of basic data and evaluation obstacles. The most
common barriers to cross-modal learning are alignment and noisy inputs. At the same time, domain shift
restricts real-world generalization, and dataset scarcity and lack of benchmarks restrict fair comparison. Class
imbalance, computational limitations, and interpretability/privacy concerns are less common but still
important. Because of these difficulties, a lot of research uses F1, Precision, Recall, and AUC in addition to
Accuracy to ensure that gains are real and not just a mirage. New benchmarks, alignment-aware models, noise-
robust pipelines, and lightweight yet interpretable architectures will all be necessary to address these issues.
Only then can performance-boosting techniques deliver reliable, generalizable, and ethically sound gains in
multimedia data analytics [27] — [29], [31]—[33], [41], [44] — [50].

D. Future Opportunities in Multimedia Data Analytics (RQ3)

As the challenges identified in Section C draw attention to existing limitations, they indicate critical
opportunities for future development. To advance knowledge acquisition from multimodal information,
research should transition from model-centric accuracy to a holistic evaluation framework. Table 2 provides
an actionable roadmap and technical checklist—covering benchmarking, alignment, robustness, and
efficiency—to guide future efforts in performance-boosting for multimedia analytics.

Table 2. Summary of identified challenges and corresponding future research opportunities.

Current Challenge Future Opportunity Example Studies
Modality integration & Develop advanced fusion mechanisms (cross-modal attention, [27], [28], [31], [33],
alignment alignment modules) and lightweight hybrid pipelines. [46], [49]
. o Improve noise-robust preprocessing, confidence-weighted fusion, [29], [41], [45], [48]—
Data noise & quality issues and use synthetic/augmented data. [50]
Dataset & benchmark Create large-scale, standardized multimodal benchmarks across [25], [26], [44], [47],
limitations domains (healthcare, social media, education). [49], [50]
Domain shift & Explore transfer learning, domain adaptation, and few-/zero-shot [27], [44], [46], [48],
generalization learning for cross-platform robustness. [50]

Class imbalance

Employ data augmentation, reweighting, and use fairer evaluation
metrics (F1, Recall, AUC).

[29], [41], [44]

Model complexity &
compute cost

Design efficient architectures (distilled transformers, pruning,
quantization) for practical scalability.

[31], [33]

Interpretability & privacy

Advance explainable multimodal Al, federated learning, and
privacy-preserving methods.

[32], [45]
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In summary, the most promising future opportunities lie in creating standardized benchmarks and
developing robust, efficient architectures that generalize across domains. At the same time, integrating
contextual knowledge, pursuing responsible Al, and targeting high-impact domains such as healthcare,
education, and marketing will ensure that performance-boosting techniques achieve both technical and
societal value. These directions provide a roadmap for future research, ensuring that multimedia analytics
continues to evolve into a field that produces reliable, interpretable, and impactful knowledge [25] — [50].

4. Conclusion

This study systematically reviewed 26 recent publications in multimedia data analytics, focusing on
performance-boosting techniques such as advanced preprocessing, fusion strategies, and deep learning
architectures. The synthesis was guided by three research questions.

First, RQ1 revealed that while multimodal approaches (specifically text—image and audio—video) are
now standard, tri-modal and complex cross-modal combinations remain under-explored. Transformer-based
models have become the dominant architecture, reflecting a significant shift toward deep attention-based
interactions. Second, RQ?2 identified critical barriers to performance, including modality misalignment, noisy
data streams, and a lack of standardized benchmarks, which currently limit the scalability of these models.
Finally, RQ3 highlighted future opportunities in lightweight modeling and explainable Al.

To fulfill the roadmap, claim of this study, the following Actionable Roadmap for Future Research is
proposed:

e Standardized Benchmarking: Shift from private or domain-specific datasets to standardized, large-
scale benchmarks to allow for objective, reproducible performance comparisons across different
fusion architectures.

e Multi-Level Alignment Evaluation: Beyond final output accuracy, future work must implement
metrics (Cross-modal Retrieval Recall atau Correlation Coefficients) to evaluate how well individual
modalities are synchronized during the fusion process.

e Robustness & Stress Testing: Researchers should conduct systematic evaluations under "noisy"
conditions—such as missing modality streams or low-quality inputs—to ensure models are reliable
for real-world deployment.

o Efficiency & Hardware Constraints: Given the increasing complexity of transformers, there is a
clear need for "green AI" approaches, focusing on model quantization and pruning to satisfy
efficiency constraints for edge-device applications.

In conclusion, multimedia data analytics is a continuously evolving research area. While significant progress
has been made in deep learning and multimodal integration, its full potential remains undiscovered. By
addressing these roadmap priorities, the research community can move toward more accurate, generalizable,
and ethically responsible multimedia systems that deliver meaningful societal and commercial impact.
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