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Abstract 

In gaining meaningful and actionable insights from complex and diverse multimedia content, many 

studies have applied data analytics approaches—particularly data mining and machine learning—to 

uncover patterns, relationships, and hidden knowledge. This systematic literature review consolidates 

findings from 26 studies conducted between 2019 and 2024 (with supplementary data from early 2025) 

on acquiring knowledge from multimedia content using data analytics and performance-boosting 

techniques. Across domains such as social media, education, healthcare, e-commerce, and public safety, 

most works integrate text–image or audio–video pairs and increasingly adopt attention-based 

architectures and transformer models with early fusion strategies. To ensure comparability, each study’s 

evidence is recorded by considering the reported performance improvement (Δ) over the authors’ 

baseline. In extracting these values, priority was given to the primary metrics—specifically Accuracy or 

F1-score—that demonstrated the most significant gain compared to unimodal results. The most frequently 

used metrics include Accuracy, the F1-score, Precision, Recall, and the Area Under the Receiver 

Operating Characteristic Curve (AUC), which provides a threshold-independent measure of classification 

quality. The most common challenges identified include modality integration and alignment, data noise 

and quality, limitations of datasets and benchmarks, and domain shift, with fewer studies reporting class 

imbalance, computational cost, and interpretability or privacy issues. At the same time, promising 

opportunities emerge in the development of standardized multimodal benchmarks, efficient transformer-

based fusion pipelines, and domain-robust learning. Overall, this review contributes a consolidated map 

of modalities, methods, and metrics, a performance-gain table for quick comparability, and a practical 

roadmap for guiding future research in multimodal sentiment analysis. 
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1. Introduction 

In the current era of digital transformation, multimedia content has become an integral part of daily 

communication and information exchange. Platforms such as social media, video streaming services, and 

news portals host diverse formats including text, images, videos, and audio. This rich environment plays a 
critical role in shaping public discourse and supporting decision-making in domains like marketing, 

healthcare, and public awareness [1]. Consequently, research has shifted from merely understanding public 

opinion to broader objectives, such as acquiring complex knowledge and enhancing system performance in 

multimedia environments [2]. While early efforts focused primarily on sentiment analysis [3], recent studies 

have expanded toward multimodal understanding and advanced performance-boosting techniques [4]–[6]. 

However, integrating multiple data types into a single analytical approach introduces significant 

challenges. Each modality—text, image, audio, and video—possesses unique semantic characteristics and 

processing requirements [5], [6]. Furthermore, while datasets often include annotated labels or metadata 

[7], many remain proprietary, creating barriers to reproducibility and generalization [8], [9]. Existing 

methods frequently struggle with aligning these modalities, preserving contextual meaning, and managing 

computational complexity. Additionally, the lack of standardized multimodal benchmarks complicates the 

fair evaluation of results across different studies [10]–[12]. Overcoming these hurdles is essential for 

making multimedia analytics more applicable in real-world contexts [13]. 
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Despite these challenges, various strategies have been developed, including early fusion, late fusion, 

and hybrid approaches [14]–[16]. Early fusion combines features at the input level, while late fusion merges 

outputs from separate models to reach a final decision. Recently, multimodal transformer architectures have 

offered new ways to enhance cross-modal alignment and boost contextual understanding [17]. These 

innovations contribute to performance-boosting, which aims to improve the accuracy and generalizability 

of data processing [4]. Furthermore, techniques such as data pre-processing and dimensionality reduction 

have gained attention for improving input quality and reducing computational load [18]. Ethical concerns 

regarding interpretability and privacy have also emerged, encouraging the use of explainable AI [19], [20]. 

The motivation for this research stems from the fragmented nature of current multimedia analytics 

studies. While many techniques exist, there is a lack of comprehensive synthesis regarding which methods 

perform best across specific domains. Therefore, the purpose of this systematic literature review is to 

synthesize studies from the last decade to identify commonly used techniques, datasets, and performance-

enhancing methods. The novelty of this work lies in its specific focus on the intersection of knowledge 

acquisition and performance-boosting strategies, providing a roadmap for future applications. 

This review aims to address three primary objectives: first, to investigate the current state of multimedia 
research in acquiring knowledge through data analytics; second, to evaluate the specific challenges of 

applying performance-boosting techniques—specifically focusing on multimodal fusion strategies (early, 

late, and hybrid), attention-based transformer architectures, and cross-modal alignment methods; and third, 

to explore future opportunities for more effective multimedia integration. By providing a comprehensive 

synthesis of trends and gaps, this study supports the development of more reliable and transparent 

multimedia systems for real-world use. 

 

2. Methods 

The study adapts a Systematic Literature Review (SLR) approach to analyze existing research on 

knowledge acquisition through data analytics and performance-boosting techniques in multimedia content. 

The SLR method provides a structured and rigorous framework for reviewing and synthesizing evidence from 
diverse studies. By focusing on approaches that utilize multiple modalities—such as text, images, audio, and 

video—the SLR enables a comprehensive understanding of the techniques, trends, and challenges in acquiring 

insights from complex multimedia environments [14]. 

The SLR methodology helps identify research objectives and opportunities for future studies through a 

structured and repeatable process [15]. This method also facilitates the use of structured search strategies, 

inclusion and exclusion criteria, and systematic data extraction and synthesis [16].  

To ensure clarity and transparency in study selection, this research applies the Preferred Reporting Items 

for Systematic Reviews and Meta-Analyses (PRISMA) guidelines as a reporting standard. PRISMA facilitates 

the structuring and presentation of the review process, especially during the stages of identification, screening, 

determining eligibility, exclusion, and inclusion of a study. A PRISMA flow diagram is used to visually 

summarize the steps taken in selecting relevant studies, including the number of the records that were found, 
screened, excluded, and retained for analysis. This ensures a transparent and well-documented process aligned 

with best practices in systematic reviews [18]. 

This approach addresses the research question outlined in SECTION 1: Introduction, which aim to 

investigate the current research landscape on multimedia content, examine challenges in performance-

boosting techniques, and identify opportunities for future applications in knowledge extraction through data 

analytics. 

To visually illustrate the six steps of the Systematic Literature Review (SLR) methodology, a modified 

version of the framework presented by Sauer and Seuring (2023) is used. The SLR process has six stages: 

defining research questions, developing a search strategy, screening studies (applying inclusion and exclusion 

criteria), extracting data, synthesizing and reporting findings [19].  These stages are tailored to meet the 

objectives of reviewing knowledge acquisition techniques in multimedia content.  

A. Defining Research Questions 

To guide this review, the following Research Question (RQs) were developed: 

• RQ1: What is the current state of research across multimedia content (text, images, audio, and video) 

in acquiring knowledge through data analytics? 

• RQ2: What are the challenges in applying performance-boosting techniques in data analytics for 

multimedia content? 

• RQ3: What are the future opportunities in acquiring knowledge through data analytics and 

performance-boosting techniques on multimedia content? 

These questions ensure a structured and targeted review of the literature. Similar to the review conducted 

by Xu, Chang, and Jayne [20], the formulation of precise research questions helps to surface key 

methodologies, innovations, and limitations across studies. Their work emphasizes challenges such as 

modality integration and data heterogeneity, which this review also seeks to address. 
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B. Developing the Search Strategy 

The search strategy was developed to systematically address the three Research Questions (RQs) by 

constructing a precise Boolean search string. For RQ1, the queries explored techniques for acquiring 

knowledge from diverse modalities using terms such as “data analytics” and “knowledge extraction.” For 

RQ2, the focus shifted to challenges and performance-boosting strategies using keywords like “fusion 

techniques,” “transformers,” and “data preprocessing.” For RQ3, the keywords targeted future trends and 

emerging opportunities. To ensure reproducibility, the final Boolean query applied was: 

("multimodal" OR "multimedia content") AND ("data analytics" OR "machine learning" OR "fusion 

techniques") AND ("performance boosting" OR "transformer") 

To guarantee high-quality evidence, the search sources were expanded beyond general repositories. 

IEEE Xplore, ACM Digital Library, and ScienceDirect were selected as the primary bibliographic databases 

due to their prominence in computer science and applied multimedia analytics. Google Scholar was utilized 

for snowballing relevant citations, while ResearchGate served strictly as a supplementary source for accessing 

full-text preprints. Searches were restricted to the 2019–2024 publication window, with 2025 works included 

only when highly relevant as supplementary evidence. 

The comprehensive literature search was conducted between August and November 2025, with the final 

query execution on November 8, 2025. Following the initial identification of records, deduplication was 

performed to remove identical entries. Regarding the screening protocol, as this is an individual study, the 

selection process was performed by the primary author. To guarantee validity and minimize selection bias in 

the absence of a second reviewer, a strict two-stage evaluation process (intra-rater reliability) was applied: 

first, adhering rigidly to the inclusion criteria during the title and abstract screening, and second, re-evaluating 

a random sample of excluded papers to prevent accidental omissions before the final full-text assessment. 

C. Screening Studies 

Inclusion criteria: 

• Studies focused on knowledge acquisition from multimedia content using data analytics (e.g., 
machine learning, data mining) or performance-boosting methods (e.g., fusion, transformers). 

• Multimodal input (≥2 modalities: text, image, audio, video, or sensor/tabular streams). 

• Clear methodology with reproducible evaluation metrics (e.g., Accuracy, F1 Score, Area Under the 
Receiver Operating Characteristic Curve (AUC)). 

• Peer-reviewed and accessible full text. 

• Published between 2019–2024 (global scope, no geographic restriction). 

Exclusion criteria: 

• Purely unimodal studies. 

• Non-peer-reviewed or inaccessible papers. 

• Inadequate methodological detail or missing evaluation. 

• Duplicate conference/journal versions (the more complete version retained). 

Quality Assessment (QA): To address the requirement for quality appraisal and risk-of-bias assessment, each 

study was evaluated based on three technical pillars: 

1. QA1 (Dataset): Does the study provide a clear description of the dataset used? 

2. QA2 (Method): Is the performance-boosting strategy (e.g., fusion or architecture) clearly defined? 

3. QA3 (Comparison): Does the study compare its results against standard baselines or other methods 

using clear metrics? 

Only studies satisfying at least two criteria were included to ensure high evidence strength across 

heterogeneous domains. As this is an individual study, the selection process was performed by the author 

using a strict two-stage intra-rater reliability process—consisting of initial screening followed by a re-

evaluation of candidates after a set interval—to minimize selection bias and ensure consistency. 

D. Extracting Data 

Data extraction included author(s), publication year, study objectives, data analytics techniques used (e.g., 

machine learning, data mining), modalities analyzed, performance-boosting strategies (e.g., fusion, 

transformers), evaluation metrics (e.g., accuracy, F1-score), key insights, and challenges. Emphasis was 

placed on identifying how studies addressed knowledge acquisition and evaluated their methodologies. 

Microsoft Excel was used to organize and manage this information. These metrics are commonly used to 

assess model effectiveness, particularly in evaluating classification performance across different modalities. 

The selection process is visualized in Figure 1, using a PRISMA flowchart to depict the number of studies 

screened, excluded, and included. 
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Figure 1. PRISMA 2020 flow diagram showing the identification, screening, eligibility, and inclusion of 

studies in this review (adapted using the PRISMA Flow Diagram tool)[51] Haddaway et al., 2022. 

Selection Results Narrative As illustrated in the PRISMA flow, the systematic selection process yielded the 

following results: 

• Identification: A total of 233 records were identified (230 from registers and 3 from databases). 

Before screening, 55 records were removed (35 duplicates and 20 for other specific reasons), leaving 

175 records for initial assessment. 

• Screening and Retrieval: From the 175 records screened by title and abstract, 102 were excluded. Of 

the 73 reports sought for retrieval, 19 could not be retrieved as full texts. 

• Eligibility and Exclusion Reasons: 54 reports were assessed for eligibility. During this phase, 28 

reports were excluded with specific justifications: 12 focused on a single modality, 9 were published 

before the 2019 threshold, and 7 lacked empirical data or sufficient methodological detail. 

• Included: After applying the Quality Assessment (QA) criteria, 26 studies were finalized for 

inclusion in the review. 

Reporting baselines and Δ. In the study table we report each paper’s performance-boosting technique and 

its improvement (Δ) over the paper’s own baseline, measured on the same dataset/split and metric (e.g., 

Accuracy, F1 Score, Area Under the Receiver Operating Characteristic Curve (AUC), AP, BLEU). Baselines 

in the included studies typically refer to unimodal models (text-only, image-only), unfused/late-fusion 

variants, or no-pretraining versions. When authors did not publish a numeric improvement, we record a 

qualitative gain and mark it  

3. Result and Discussion  

A. Overview of Selected Studies 

This section summarizes the empirical findings from the multimodal analytics literature relevant to our 

title and RQs. Across varied domains (social media/politics, marketing, education, health, finance, public 

safety), studies typically combine text–image or text–video (often with audio/transcripts) and employ deep 

learning with attention or transformer-based fusion to acquire knowledge from multimedia data. In general, 
multimodal models outperform unimodal baselines, especially when fusion explicitly aligns signals (e.g., 

cross-attention/gating) and when performance-boosting steps (preprocessing, knowledge augmentation, or 

hybrid fusion) are applied. The answers to RQ1–RQ3 in Sections B–D are based on this consolidated evidence. 

In Table 1, “Model Method” refers to each paper’s core multimodal pipeline (modality encoders + fusion), 

while “Performance Boost” denotes any targeted enhancement relative to that paper’s baseline (e.g., cross-

attention, hybrid fusion, pretraining). Where available, we report Δ as the improvement over the baseline on 

the same dataset/metric; n/r = no numeric Δ reported. Table 1 therefore provides a compact view of 
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modalities/datasets, model methods with their performance boosts (and Δ), evaluation metrics, key findings, 

and the challenges addressed. 

To ensure comparability across studies, performance improvements (Δ) are discussed using task-

appropriate evaluation metrics. For classification tasks, Macro-F1 is prioritized to address potential class 

imbalances, while AUC is reported specifically for clinical or medical classification scenarios to ensure 

diagnostic rigor. Regression-based outcomes, such as engagement predictions, are analyzed separately using 

RMSE or MAE. To further control for heterogeneity, studies are categorized into distinct "Task Families" 

(e.g., Medical, Social Integrity, and Behavioral Analysis). As a result, performance gains are interpreted 

within comparable task and metric categories rather than being aggregated across fundamentally different 

evaluation regimes. 

To control heterogeneity across fundamentally different objectives and evaluation regimes, the included 

studies are grouped by task family, as summarized in Table 1. Performance comparisons and qualitative trends 

are therefore discussed within each task family—such as sentiment and affect analysis, safety and harmful 

content detection, medical and health analytics, political discourse, and recommender systems—rather than 

generalized across tasks with distinct goals and metrics. This categorical organization ensures that reported 
performance-boosting strategies are interpreted within their specific technical and application contexts, 

leading to more reliable and nuanced conclusions. 

Table 1. Summary of the 26 included studies. 

Title (Year) Task Family 
Modalities & 

Dataset(s) 

Modeling 

Technique & 

Boost (Δ vs 

baseline) 

Computational 

Efficiency / 

Resource 

Requirements 

Key Findings 
Challenges 

Addressed 

Evaluation 

Metrics 

Student 
Engagement 

Assessment using 
Multimodal Deep 
Learning (2025) 

[25] 

Education / 

Learning 
Analytics 

Video, text (chat 
logs), and system 

interaction logs 
(collected dataset of 

online class) 

ICCN (audio-
visual) with two-
step pretraining; 

feature-level 
fusion; Δ F1 
+0.26 vs text-

only. [Evidence: 
Main Result] 

Not reported 

Multimodal 
fusion of visual, 
textual, and log 

data yields 
effective 

engagement level 
predictions 

Difficulty of 
combining 

asynchronous 
modalities – 

solved by 

aligning 

Accuracy, F1-
score 

Multimodal Deep 
Learning for 

Integrating Chest 
Radiographs and 

Clinical 
Parameters: A 

Case for 
Transformers 

(2023) [26] 

Medical 

Diagnosis 

Chest X-ray images + 
patient clinical 

parameters (MIMIC-
CXR & hospital data) 

Transformer 

fusion (image + 
tabular); late 

fusion; Δ AUC 
+0.07 vs image-
only. [Evidence: 

Main Result] 

High – 
Transformer-
based fusion; 

model 
complexity 
discussed 

Model using 
both imaging and 

vitals achieves 

significantly 
higher AUC 

(0.77 vs ~0.70) 

Previous models 
ignored either 

imaging or labs – 

this work aligns 
both, addressing 

imbalance 

AUC (per 

disease) 

Building an ICCN 
Multimodal 
Classifier of 

Aggressive 
Political Debate 
Style: Towards a 
Computational 

Understanding of 
Candidate 

 Performance Over 
Time (2023) [27] 

Political 
Discourse 
Analysis 

Video+audio of 
televised US 

presidential debates 
(1980–2020) 

ICCN (audio-
visual) with two-
step pretraining; 

feature-level 

fusion; Δ F1 
+0.26 vs text-

only. [Evidence: 
Main Result] 

Not reported 

Multimodal 
classifier 

accurately 
detects 

aggressive 
debate style; 

multi-era training 
improves 

generalization 

Challenge of 
distribution shifts 

over decades 

tackled by era-
specific 

pretraining 

F1-score, 
Precision, 

Recall 

MulT: Multimodal 
Transformer for 

Language 
Sequences (2019) 

[28] 

Multimodal 

Language 
Modeling 

Spoken video 
opinions (CMU-
MOSI, -MOSEI 

datasets: text 
transcript, video, 

audio) 

Learned latent 

cross-modal 
alignments; ~2–

3% higher 
sentiment 

accuracy vs prior 
LSTM/CNN 

fusion baseline 
[Evidence: Main 

Result] 

High – 
Attention-heavy 

multimodal 
transformer 

End-to-end 
Transformer 

(MulT) captures 
long-range cross-

modal 

dependencies 

Challenges of 
different 

sampling rates 

(speech vs video) 
and long 

dependencies 
were resolved 

Classification 
accuracy, 

Regression 
error (e.g., 

MAE, Corr) 

Call Center Agent 
Performance via 

Multimodal 
Analysis (2021) 

[29] 

Human 
Performance 

Analytics 

Call audio recordings 
+ auto-transcribed 

text (real call center 
dataset) 

Three-stage 
audio+text; 

custom MWS 
attention + late 

fusion; Δ Acc 
+1.7 vs text-only. 
[Evidence: Main 

Result] 

Not reported 

Multimodal 

model provides 
the best call 

rating 
predictions, 

slightly 
outperforming 

single-modal 
setups 

Difficulty: 
aligning content 
and tone aspects 
of a call. Parallel 
modeling + MWS 
reduced irrelevant 

features 

Classification 

accuracy 

Modeling Intra and 
Inter-modality 
Incongruity for 
Multi-Modal 

Sarcasm Detection 
(2020) [30] 

Sentiment / 
Affect Analysis 

Tweets with image + 

text (public sarcasm 
dataset) 

Emphasizing 
cross-modal 

incongruity; 
improved 

sarcasm detection 
precision/F1 vs 
simple concat 
baseline; n/r. 

[Evidence: Main 
Result] 

Not reported 

Model 
leveraging cross-

modal 
incongruity 

achieved state-
of-the-art results 

Sarcasm often 
arises from subtle 

contradictions 
(either within text 
or between text-

image pairs) 

F1-score, 
Accuracy 

Weakly-
Supervised 
Multimodal 

Violence Detection 
(2025) [31] 

Safety / 
Violence 
Detection 

Unlabeled 
surveillance videos 

(video-level 

“violence/no-
violence” labels; 

limited) 

MIL over 

audio+video; 
cross-modal 

semantic 
alignment; n/r. 

[Evidence: Main 
Result] 

Not reported 

Aligning less 
informative 

modalities 
(audio, motion) 
with the most 
salient visual 

features 
improves 

performance 

Challenge: no 
segment-level 
labels (weak 

supervision) and 
modality 
imbalance 

Average 

Precision (AP) 

Multimodal 
machine learning 

for deception 
detection using 
behavioral and 

Deception 
Detection 

Human interrogation 
data (100 subjects, 

“mock crime” trials) 
— seven modalities: 

EEG, EDA/GSR, 

Fusion of 
behavioral + 

physiological 
cues; accuracy up 
to 15% higher vs 

Not reported 

Multimodal AI 
achieved far 

higher accuracy 
than traditional 
polygraph or 

Conventional lie 
detectors faced 

high false rates 
due to focusing 
on one signal; 

Accuracy 
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Title (Year) Task Family 
Modalities & 

Dataset(s) 

Modeling 

Technique & 

Boost (Δ vs 

baseline) 

Computational 

Efficiency / 

Resource 

Requirements 

Key Findings 
Challenges 

Addressed 

Evaluation 

Metrics 

physiological data 
(2025) [32] 

eye-gaze, facial 
video, body motion 
video, audio, text 

best single 
modality 

[Evidence: Main 
Result] 

single-signal 
detectors 

multimodal 
approach 

overcomes by 
combining 

complementary 

cues 

Multimodal 
Sentiment Analysis 

based on Video 

and Audio Inputs 
(2024) [33] 

Sentiment / 
Affect Analysis 

Video blog clips with 
spoken content 

(CREMA-D audio, 

RAVDESS video 
emotion) 

Ensemble 
audio+video 

models; higher 
emotion 

recognition 
accuracy vs 

audio-only or 
video-only; n/r. 

[Evidence: Main 
Result] 

Not reported 

Combining 
auditory and 

visual channels 
reliably 

recognizes 
emotions better 
than either alone 

Differing 

confidence of 
audio vs video 
predictors and 

alignment; 
handled with 
confidence-

weighted fusion 

Accuracy 
(emotion 

classification) 

SemEval-2021 
Task 6: Detection 

of Persuasion 
Techniques in 

Texts and Images 
(2021) [34] 

Political / 
Persuasion 

Detection 

Internet memes with 
both image and 

overlaid text 

(SemEval-2021 Task 
6 dataset) 

Image + text 
multimodal 

analysis; F1 
~0.50 vs ~0.45 

text-only (+5 pts) 
for propaganda 

meme 
classification 

[Evidence: Main 
Result] 

High – Large-
scale 

multimodal 
benchmark 

Multimodal 
models 

outperformed 
unimodal ones 
on propaganda 

detection; image 
helps 

disambiguate 
text 

Aligning 
semantic meaning 

between meme 
image and text; 
addressed with 

OCR, co-attention 

F1-score 
(multi-label) 

Multimodal Hate 

Speech Detection 
in Memes using 

Contrastive 
Language-Image 

Pre-training (2022) 
[35] 

Safety / Harmful 
Content 

Detection 

Memes from 
Facebook/Instagram 
with sexist content 

(SemEval-2022 Task 
5) 

Fine-tuned 
multimodal 

transformer (VL-
BERT); F1 ~0.75 
vs baseline fusion 
~0.65 (≈+10 pts) 
on hateful meme 
task [Evidence: 

Main Result] 

High – CLIP-
based pre-

trained large 
models 

Pre-trained 
vision–language 

transformers 

significantly 
outperformed ad-

hoc fusions 

Prior approaches 

struggled with 
sarcasm/context; 

contrastive 
pretraining 

captures cross-
modal semantics 

F1-score, 

Precision 

Audio-Visual 
Multimodal 

Deepfake 
Detection 

Leveraging 
Emotional 

Recognition (2022) 
[36] 

Media Forensics 
/ Deepfake 

Detection 

Fake videos of 
talking persons 
(FakeAVCeleb 

dataset: manipulated 
audio & video) 

Combined audio-
visual (lip & 
voice) cues; 

95.2% deepfake 
detection 

accuracy vs ~85–
90% with single 

modality 
[Evidence: Main 

Result] 

Moderate – 
Latency-aware 
AV processing 

mentioned 

Detects 

deepfakes by 
noticing 

mismatched 
affect in voice vs 

face 

Prior detectors 
focused on visual 
artifacts or audio 

glitches 

separately; fusion 
catches cross-

modal mismatch 

Accuracy, 
Precision, 

Recall 

Technologies for 
detecting and 

monitoring drivers’ 
states: A 

systematic review 
(2020) [37] 

Health 
Monitoring 

Driving simulator 
data: driver face 
video + vehicle 

telemetry (steering, 
etc.) 

Multi-sensor 
(e.g., EEG + 

video) fusion; 
~98.4% accuracy 

vs ~90.3% 
vision-only (+8.1 
pts) [Evidence: 

Survey/Aggregate 

Result] 

Moderate – 
Real-time 
monitoring 
constraints 
discussed 

Using both 
camera and car 

sensor data leads 
to more reliable 

drowsiness 
estimation 

Varying lighting, 
individual style 

differences; 
addressed with 

multimodal 
redundancy 

Accuracy, 
Precision, 

Recall 

Region-attentive 
multimodal neural 

machine 
translation (2020) 

[38] 

Multimodal 

Machine 
Translation 

Bilingual image-
caption dataset 

(Multi30k: English 
sentences + 

corresponding 
images) 

Visual context in 
translation; 

modest +0.5–0.9 

BLEU gain over 
text-only baseline 
[Evidence: Main 

Result] 

High – Region-
attentive 

transformer 
architecture 

Incorporating 
relevant image 

regions into 
translation 

process 
improved quality 

Many sentences 
don’t need image 

info; irrelevant 

visual data can be 
distracting — 
mitigated with 
region attention 

BLEU, 

Translation 
accuracy 

Multimodal Fusion 
with Dual-

Attention Based on 
Textual Double-

Embedding 
Networks for 

Rumor Detection 
(2023) [39] 

Misinformation / 

Rumor 
Detection 

Text + Image; 
evaluated on public 

rumor-detection 
benchmarks (e.g., 

Twitter/Weibo-style 

datasets, per paper) 

Textual double-
embedding 

network + visual 
CNN features; 

dual/co-attention 
cross-modal 

fusion; Δ 
Accuracy/F1 ↑ vs 

unimodal & 
simple-concat 
baselines (n/r) 

[Evidence: Main 

Result] 

Not reported 

Multimodal dual-
attention 

improves rumor 

detection over 
text-only and 

naïve 
concatenation 

Modality 
alignment & 
noise—co-

attention focuses 
on consistent 

cross-modal cues, 

down-weights 
noisy signals 

Accuracy, F1 

LiDAR-Camera 

Fusion for 3D 
Object Detection 

(2020) [40] 

Autonomous 
Systems / 3D 

Perception 

KITTI autonomous 

driving: LiDAR point 
clouds + RGB camera 

images 

LiDAR + camera 
fusion; +2–4% 

3D object 

detection AP vs 
LiDAR-only 

baseline 
[Evidence: Main 

Result] 

High – Real-
time fusion 
constraints 

Combined 
system detects 
objects more 
reliably than 

single-sensor 

LiDAR and 
camera have 
different data 

characteristics; 
addressed via 

learned joint 
representation 

Average 

Precision (AP) 
@ IoU 

threshold 

Effects of Data 
Augmentations on 
Speech Emotion 

Recognition (2023) 
[41] 

Emotion 

Recognition 

IEMOCAP, MSP-
Podcast corpora: 

recorded utterances + 
automatically 

generated transcripts 

Audio + ASR 
transcript 

features; accuracy 
~77.5% vs 

~72.0% audio-
only (+5.5 pts) 

[Evidence: Main 
Result] 

Moderate – 
Processing 

speed discussed 

Notably 
improved 

recognition of 

emotions 
(sad/angry) with 
transcript cues 

ASR errors & 
async audio/text 

frames; aligned 
using attention 

Accuracy, 

UAR 

Cross-target stance 
detection: A survey 

of techniques, 
datasets, and  

challenges (2021) 
[42] 

Political / Stance 
Detection 

Political debate 
videos with speech 
transcripts, audio 

prosody, and speaker 

gestures 

Text + nonverbal 
audio-visual cues; 

~5% higher 
stance 

classification 
accuracy vs text-

only [Evidence: 
Survey/Aggregate 

Result] 

Not reported 
(survey study) 

Combined 
analysis 

outperforms text-
only when 

irony/ambiguity 
present 

Pure text stance 
detection 
struggles; 

multimodal helps 

disambiguate 

Accuracy, F1-
score 

Enhancing 

Personalized Ads 
Using Interest 

User Profiling / 

Marketing 
Analytics 

Text (SNS post 
captions) + images 

Deep image+text 

feature fusion; 
accuracy 96.6% 

Not reported 

Fusing visual 

and textual cues 
in user posts 

Aligning 

heterogeneous ad 
images and noisy 

Accuracy (top-
1) 
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Notes: Δ = improvement vs the paper’s own baseline on the same dataset/split and metric (positive = better). n/r = numeric Δ not 

reported. Metrics: Accuracy, F1 Score, Precision, Recall, AUC, AP, BLEU, RMSE, MAE, UAR, NDCG. 

Table 1 shows that explicit reporting of computational efficiency remains limited in the multimodal 

analytics literature. Only a subset of studies—primarily those involving transformer-based architectures, real-

time systems, or safety-critical applications—provide information on resource requirements, inference speed, 

or computational cost. Most studies predominantly emphasize accuracy-oriented evaluation metrics, with 

limited discussion on efficiency-related trade-offs. This observation highlights an open research opportunity 

for future multimodal studies to more systematically balance performance improvements with computational 

efficiency and resource constraints. Furthermore, all reported performance improvements (Δ) are explicitly 

traced back to the primary benchmark results of the cited studies, as indicated in the 'Evidence' metadata 

within Table 1, to ensure the validity and traceability of the comparative analysis. 

B. Addressing RQ1 – Current State of Research in Multimodal Data Analytics 

To provide an overview of how studies combine data types, Figure 2 summarizes the modality 
combinations (text, images, audio, video) used across the included works in our corpus. The distribution 

reflects the practical formats most common in real-world content (e.g., posts, memes, short videos) and is 

derived directly from the studies we reviewed. 

Title (Year) Task Family 
Modalities & 

Dataset(s) 

Modeling 

Technique & 

Boost (Δ vs 

baseline) 

Computational 

Efficiency / 

Resource 

Requirements 

Key Findings 
Challenges 

Addressed 

Evaluation 

Metrics 

Category 
Classification of 
SNS Users Based 
on Deep Neural 
Networks (2021) 

[43] 

vs 93.1% image-
only (+3.5 pts) vs 
41.4% text-only 

(+55.2 pts) 
[Evidence: Main 

Result] 

improves interest 
targeting 

captions; combats 
weak text-only 

signals 

Climbing the 
Influence Tiers on 

TikTok: A 
Multimodal Study 

(2024) [44] 

Social Media 
Analytics 

Video (frames, facial 
expressions) + audio 

+ text (video 

captions/metadata) 

Video + text 
(ASR) + 

engagement 
features; 

qualitative 
improvement in 
tier prediction; 
n/r. [Evidence: 

Main Result] 

Not reported 

Video-based 
features (e.g., 

“pleasure” and 
visible facial 

affect) are 
predictive 

Platform 
dynamics and 
heterogeneous 

modalities; 
reported as 

predictive 
modelling (details 

limited) 

(Reported) 
predictive 
metrics; 

regression-

style (not all 
public) 

Like, Comment, 
and Share on 

TikTok: Exploring 

the Effect of 
Sentiment and 
Second-Person 

View on the User 
Engagement with 

TikTok News 

Videos (2024) [45] 

Social Media 
Engagement 

Analysis 

Video content 
(camera perspective) 
+ textual sentiment 

Gradient-based 
fine-grained score 

mapping; 
improved subtle 

engagement 
differentiation; 
n/r. [Evidence: 
Main Result] 

Not reported 

Videos with 
negative 

sentiment and 
more second-

person (“you”) 

drive 
engagement 

Noisy user-

generated 
content; 

modelling cross-
modal cues that 

drive engagement 

Statistical 
significance of 

regression 
coefficients 

A Multimodal 
Recommender 
System Using 
Deep Learning 

Techniques 

Combining Review 
Texts and Images 

(2024) [46] 

Recommender 
Systems 

Text (user review 
text) + images (user-

uploaded product 

photos) 

Co-attention 
multimodal 

recommender; 

~10% RMSE 
reduction vs best 

baseline (e.g., 
0.725 vs 0.804) 
[Evidence: Main 

Result] 

Moderate – 

Efficiency 
implied in 

deployment 
context 

Weak 
supervision in 

reviews; aligning 
visual and 

textual signals; 

cold-start for 
items with few 

photos 

Combining 
review texts and 
product images; 

dealing with cold-
start / sparse 

features; aligning 
heterogeneous 

modalities. 

Accuracy, 
Precision, 
Recall, F1 

“Less is More”: 
Engagement with 

the Content of 
Social Media 

Influencers (2024) 

[47] 

Social Media 

Engagement 
Analysis 

Text (post captions) + 
images (post photos) 

Late-fused 
DeBERTa + 
ConvNeXT; 

Fakeddit 

accuracy 91.2% 
vs 87.8% prior 
best (+3.4 pts) 

[Evidence: Main 
Result] 

Not reported 

Posts that 
include pictures 
(vs text-only) 
and especially 

images 
containing 

people perform 
better 

Using both 
modalities at 

scale; robustness 
across datasets 

Accuracy, 

Precision, 
Recall, F1 

Detecting fake 
news by exploring 
the consistency of 
multimodal data 

(2024) [48] 

Fake News 

Detection 

Text + Image 
(comments + attached 

media) 

Cross-modal 
attention + 

contrastive & OT 
(MCOT); 

outperforms text-
only baseline; n/r. 
[Evidence: Main 

Result] 

Not reported 

Cross-modal 
cues detect 

nuanced toxicity 
better than text 

alone 

Noisy images; 
domain drift 

 
F1, Accuracy 

Multimodal Social 
Media Fake News 

Detection Based on 
1D-CCNet 
Attention 

Mechanism [49] 

Fake News 
Detection 

Social media 
misinformation 

1D-CCNet 
attention + cross-

fusion; ~2–4% 
accuracy increase 

vs single-
modality 

baselines 
[Evidence: Main 

Result] 

Moderate – 

Lightweight 
attention 

mechanism 

Pretrained 
vision-language 
representations 
transfer well to 

fake-news tasks 

Weak image–text 
alignment; label 
noise in web data 

Accuracy, F1 

Multi-modal 

Stance Detection: 
New Datasets and 
Model (2024) [50] 

Political / Stance 
Detection 

Modalities covered: 
primarily Text+Image 

(with a few 
Text+Video); survey 

mapping 

N/A (survey) – 

adding images to 
text yields ~+2–8 
macro-F1 pts vs 

text-only 
(aggregate result) 

[Evidence: 

Survey/Aggregate 
Result] 

Not reported 

Field is dataset-
driven: most 
resources are 

text-heavy; with 
fewer truly 
balanced 

multimodal 
datasets 

Recurring issues: 
annotation 

inconsistency, 
class imbalance; 
weak alignment 

Most primary 
works report 
Accuracy, 
Macro-F1 
(preferred 

under 

imbalance) 
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Figure 2. Modality combinations used across included studies (text/image/audio/video). 
Counts include only combinations among Text, Image, Audio, and Video. One study uses an additional sensor (Image + 

LiDAR) and is excluded from this figure ([40]). 

Figure 3 illustrates the distribution of modality combinations used in the 26 selected studies. A majority 

of recent works leverage multiple data types, often pairing two or more of text, images, audio, and video, 

depending on the application. The most common modality pairings observed are: 

• Text + Image (12 Studies): This is the most frequent combination, for about twelve using it. It appears 
frequently seen in social media and e-commerce statistics, where posts or reviews includes both textual 
captions with pictures. Examples include the detection of sarcasm on Twitter [30], the identification of 
hate speech and meme propaganda [34,35], multimodal recommendation systems that use images in 
product reviews [39,46], and social media engagement analysis on postings that contain images [47]. 
These studies demonstrate how combining textual and visual cues can enhance classification precision 
and prediction quality, particularly for tasks involving content understanding when text is contextualized 
by images and vice versa. 

• Text + Video + Audio (3 Studies): About three studies combine textual information with video content, 
frequently including spoken audio or video transcripts. This modality mix is natural for any video-based 
content that can be transcribed or annotated with text. For instance, several works on video analysis 
include transcripts or metadata as a text modality: a multimodal sentiment analysis model processes 
spoken video opinions using transcripts plus audio and visual signals [28], and political debate analysis 
uses video (visual gestures) plus audio and prosody with text transcripts to categorize aggressive or 
argumentative speaking styles [27, 42]. In the social media domain, TikTok video analytics similarly 
merge video attributes with textual captions or sentiment metadata [44,45]. Combining text and video 
enables these models to capture both what is being said or written and visual events, which is crucial for 
tasks like sentiment understanding [28] or stance classification in speeches [42]. 

• Audio + Video with no text (5 Studies): There are 5 studies focus purely on audio-visual content without 
an explicit text component. These typically address scenarios where spoken or environmental sounds 
and visuals together define the task. Examples include detecting violence in surveillance footage by 
fusing CCTV video and ambient audio [31], emotion recognition from facial expressions and vocal tone 
in video clips [33], and deepfake detection on videos by checking consistency of lip movements and 
voice [36]. The temporal synchronization of audio and video is crucial in these situations; the models 
use synchronous cues (such as a sound and a matching motion) to increase detection accuracy compared 
to utilizing only one modality. An audio-visual model for deceit or emotion, for example, might detect 
tiny clues that a single modality could overlook (such as a tense voice combined with nervous facial 

expressions) [33]. 

• Text + Audio (2 studies): A smaller subset of studies uses this pairing, typically in the analysis of spoken-
language material when the transcript and voice signal are both useful. One example is a call center 
performance analysis, which combines call audio features with the text of transcripts to predict customer 
service outcomes [29]. Another is a speech emotion dataset where transcribed words are fused with 
acoustic features to classify emotions [41]. These studies demonstrate that textual transcripts, which 
capture semantic information, enhance raw audio, which captures prosody and intonation, producing 
more accurate results than either one alone [29,41]. 

• Text + Video (2 studies): This pairing occurs in specific situations where textual information is directly 
connected to visual material. Studies have used text–video fusion to understand and predict social or 
communicative outcomes. For example, in political debate analysis a model can take video of speakers 
(for gestures and demeanor) together with the transcribed speech text to determine the speaker’s stance 
on issues [42]. Similarly, another work examines user engagement with short news videos on social 
media by looking at the video content alongside textual elements like titles or descriptions (e.g., to predict 
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likes and shares on TikTok) [45]. Essentially, when text and video are combined, computers are able to 
ground language in visual evidence (or vice versa), which is crucial for interpreting narrative or high-
level context in multimedia information. 

• Image + Text + Video (1 study). This setting appears in social-video analytics where the footage (video) 
is complemented by on-screen graphics/thumbnails or frames (image) and captions/titles/ASR 
transcripts (text) to capture both the narrative and its visual framing [50]. The typical pipeline encodes 
video frames (e.g., 2D/3D CNN or ViT-based video encoder), extracts key images (thumbnail/overlay) 
with a vision backbone, and represents text via a transformer; these streams are then fused—often with 
cross-attention or co-attention—to align what is said with what is shown and how it is visually packaged 
[50]. This tri-source design is useful for tasks like stance or credibility assessment, sentiment/affect 
inference, or engagement prediction, where thumbnails/overlays and wording can prime audience 
perception beyond the raw footage [50]. Reported evaluations use Accuracy/F1 (for classification) or 
MAE/RMSE (for engagement regression), with tri-modal fusion outperforming any two-stream ablation, 
indicating complementary signal across the three channels [50]. Summary: rare but valuable when 

titles/captions and visual branding (images) jointly shape how the underlying video is interpreted [50]. 

Image + LiDAR (1 study): One remarkable outlier combined camera imagery with LiDAR sensor data for 

3D perception tasks [40]. LiDAR (Light Detection and Ranging) provides depth information as point clouds, 

which complements the RGB visual information from cameras. Notably, Figure 2 does not include this 

specific combination because LiDAR is not one of the four fundamental modalities in RQ1 (Text, Image, 

Audio, Video). However, it represents an important multimodal case outside the core scope, underlining how 

additional sensors can further enhance vision-based analysis. 

Overall. The corpus is dominated by Text + Image, followed by Audio + Video; Text + Video and Text + 

Audio appear in niche speech/video settings, while tri-modal (Audio + Text + Video) and Image + Text + 

Video are rare but valuable for richer social-video contexts. This distribution aligns exactly with Figure 3 (12 

+ 5 + 2 + 3 + 2 + 1 = 25; LiDAR case excluded).  

To complement the modality view, Figure 3 reports the modeling techniques and fusion strategies most 

frequently adopted (e.g., transformer-based models with attention, early/feature-level fusion, late/score-level 

fusion, classical baselines). These counts are compiled from the same set of studies and highlight the current 

shift toward attention-mediated cross-modal learning. 

 

Figure 3. Distribution of modeling techniques/fusion strategies in the 26 reviewed studies. Counts indicate 

technique mentions; one paper may use multiple techniques. 

The analytical techniques for fusing and learning from multimodal data have developed in sync with the 

variety of modality combinations. The most popular methods employed in the studies are broken down in 

Figure 3, which includes both traditional and contemporary deep learning techniques. While basic early/late 

fusion and conventional algorithms play a reduced role, there is a clear trend toward deep learning models 

with sophisticated fusion mechanisms, particularly transformers and attention-based architectures. Key 

approach categories include: 

• Transformer-Based Models (cross-/co-attention) — 12 studies: Roughly half of the surveyed studies 
employ transformer architectures or heavy attention mechanisms as the core of their multimodal models. 
The rise of transformers is apparent in tasks like vision-language understanding and video analysis. For 
example, cross-modal Transformer networks are used to align video, audio, and text streams for sentiment 
prediction, enabling state-of-the-art performance without manual alignment [28]. Likewise, several text–
image models leverage pre-trained transformer language encoders (BERT/RoBERTa) alongside CNN or 
ViT image encoders, and then apply attention-based co-fusion layers to blend modalities [30,39,46]. In a 
medical context, one study built a transformer that attends between X-ray features and clinical data, 
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outperforming either modality alone [26]. The prevalence of transformers reflects their power in capturing 
complex cross-modal relationships; as one survey notes, there is a “clear trend toward transformer-based 
vision–language models” in recent multimodal research. Overall, approaches that integrate modalities via 
learned attention (e.g. co-attention in [30,39], or CLIP’s dual-transformer embeddings in [49]) are now 
common, indicating that the field has embraced architectures capable of deeper feature interaction and 
alignment across data types. 

• Late Fusion Approaches (Decision-level) — 4 studies: Several studies still use a late fusion strategy 
(decision-level fusion), wherein each modality is processed largely independently and the outputs are 
combined at the end (e.g., via weighted voting or a final classifier). About 4 of the works follow this 
pattern. For instance, a call analytics model trains separate classifiers on audio and on text, then merges 
their prediction probabilities to yield the final performance score [29]. An emotion recognition framework 
similarly runs parallel pipelines (one on speech audio features, one on transcript text using BERT) and 
then fuses the predicted emotion probabilities to make a final decision [41]. In another case, researchers 
fine-tuned separate transformers for audio (wav2vec2) and video (ViViT) streams, and experimented with 
simply averaging their outputs versus dynamically weighting them at inference [33]. The appeal of late 
fusion is its modularity – each modality’s model can be optimized on its own – and indeed it often serves 
as a baseline or fallback due to its simplicity. However, late fusion inherently limits cross-modal 
interaction during training. The reviewed studies generally find that while late fusion improves over single-
modality results [29,41], it can be outperformed by more integrated fusion methods that learn the interplay 
between modalities (e.g., attention-based fusion often yields higher gains). 

• Early (Feature-Level) Fusion — 5 studies: In a few cases, an early fusion or feature-level merging is used, 
meaning the raw features from different modalities are combined into a joint representation before feeding 
into a model. Early fusion tends to appear in domains where modalities are naturally aligned or of 
commensurate type (often sensor fusion tasks). A prime example is autonomous driving perception: one 
study projects 3D LiDAR point cloud features and 2D image features into a common space and fuses them 
early in a unified network to improve object detection in self-driving cars [40]. Another system for driver 
monitoring concatenates facial feature vectors (from video) with vehicle telemetry readings, feeding the 
union into a classifier that detects drowsiness [37]. In the surveillance violence detection model, audio and 
optical-flow features are mapped into the visual feature space and jointly analyzed as one feature set [31]. 
These early fusion designs allow the model to learn cross-modal correlations from the very beginning 
(e.g., linking a sudden noise with a corresponding frame pattern in [31]). The downside is that early fusion 
requires careful preprocessing to align modalities in time/space and handle different feature scales. It is 
therefore used sparingly, but when the data synchronization is straightforward (as in sensor data or tightly 
coupled audio-visual events), early fusion can effectively capture multimodal patterns without needing 

separate model branches. 

• Hybrid fusion (multi-level) — 7 studies: Hybrid systems blend modalities at more than one stage: they 
first let features interact inside the network (feature-level or intermediate fusion), then stabilize predictions 
by blending per-modality outputs at the end (decision-level). In practice, this design is popular in audio–
visual safety/affect settings where one stream is often noisy or missing; feature fusion injects cross-modal 
cues early, while the final score blend keeps the model robust when, say, audio drops out or faces are 
occluded [31], [33]. Empirically, hybrid pipelines tend to outperform single-stage early/late baselines with 
only modest added compute, making them attractive when data are limited or latency matters. Studies 
typically report clearer gains in F1/Accuracy and more stable performance under perturbations, supported 
by ablations that compare feature-only vs score-only vs hybrid fusion [31], [33]. Takeaway: Hybrid fusion 
offers a practical, high-yield middle ground—it captures meaningful cross-modal interactions while 
preserving the modularity and resilience practitioners need for real-world deployment. 

• Classical ML pipelines (SVM/RF + hand-crafted features) — 2 studies: Classical approaches appear 
sparingly and mainly as baselines or when signals are highly heterogeneous. Each stream is hand-
engineered (e.g., MFCC/prosody, LBP/HOG, physiological features) and classified with SVM/RF, with 
final decisions aggregated at score level [32]. They remain data-efficient and interpretable, but generally 
trail deep/attention-based fusion on accuracy and adaptability. Takeaway: useful for comparison or 
constrained setups, yet not the mainstream choice today. 

In summary, multimodal analytics now favors image + text and audio + video pairings with attention-based 

fusion; across domains these consistently beat unimodal baselines (e.g., X-ray + clinical AUC 0.77 [26]; image 

+ text 96.5% vs 93%/41% [43]; corroborated by [29], [49]), supporting learned cross-modal attention as the 

most effective path for knowledge extraction [50]. 

C. Addressing RQ 2 Challenges in Applying Performance-Boosting Techniques 

When examining the 26 selected studies, several recurring challenges emerged that limit the effective 

application of performance-boosting techniques in multimedia analytics. These are summarized in Figure 5, 

which counts challenge mentions (a single study may report more than one challenge). The figure shows 

modality integration and alignment as the most frequently reported obstacle (12 studies), followed by data 

noise and quality issues (10), dataset and benchmark limitations (7), domain shift and generalization (6), class 

imbalance (3), and less frequently model complexity/compute cost (2) and interpretability/privacy (2). 
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Figure 5. Distribution of reported challenges in applying performance-boosting techniques across the 26 

reviewed studies. 
Counts represent challenge mentions rather than unique studies; one study may contribute to multiple categories, so totals exceed N. 

• Modality Integration & Alignment (n=12): The most common challenge concerns how different 
modalities can be meaningfully combined. Aligning text with images, or audio with video frames, is rarely 
straightforward. For instance, in debate analysis [27], [42], transcripts often did not match the timing of 
gestures, while in video opinion mining [28], the prosody of speech sometimes contradicted visual cues. 
Similarly, hate speech detection in multimodal memes [34], [35] and product review classification [46], 
[49], [50] showed that captions often drift semantically from images. Without explicit attention-based 
alignment layers, these mismatches degrade accuracy. Performance-boosting models are only effective if 
they can capture the true relationships between signals, which makes alignment one of the most persistent 

and technical obstacles. 

• Data Noise and Quality Issues (n=10): Noisy signals are the second-largest barrier. Real-world 
multimedia data—especially from social media—is messy: images blurred or compressed, audio with 
heavy background noise, and text full of slang or sarcasm. In call center analytics [29], automatic speech 
transcripts were riddled with errors, while in speech emotion recognition [41], poor recording conditions 
limited acoustic feature reliability. Social media datasets [45], [46], [48]–[50] also highlight that low-
quality content reduces model robustness. Performance-boosting techniques like transformers often 
amplify these errors unless paired with noise filtering, confidence-based weighting, or hybrid fusion that 
prevents weak signals from dominating. Thus, improving data quality is as important as designing 
sophisticated models. 

• Dataset and Benchmark Limitations (n=7): Another key issue is the lack of standardized, large-scale 
multimodal datasets. TikTok engagement studies [44], [47] collected their own data, making results 
incomparable with others. Broader reviews [49], [50] argue that without shared benchmarks, researchers 
risk overfitting to small datasets, reporting inflated results that do not generalize. The absence of unified 
datasets and evaluation splits prevents performance-boosting methods from being properly benchmarked, 

leaving open the question of which techniques truly work best across domains. 

• Domain Shift and Generalization (n=6): Even when boosting works on a dataset, performance often 
drops in new contexts. Debate analytics [27] and social media studies [44], [46], [48], [50] show that 
models trained on one platform or time period underperform elsewhere due to changing vocabulary, 
formats, or cultural signals. This makes generalization a fundamental challenge. True performance 
boosting requires not only better in-domain scores but also robustness across domains, which is rarely 
demonstrated in current work. 

• Class Imbalance (n=3): Imbalance was reported in studies like [29], [41], [44], where majority classes 
dominated predictions. For example, positive sentiment is overrepresented compared to rare negative or 
harmful content. If only Accuracy is reported, improvements look strong while rare classes are missed. 
This is why many works rely on F1-score, Precision, and Recall to evaluate fairness of improvements. 
Addressing imbalance is crucial to ensure that boosting reflects real advances rather than majority-class 
bias. 

• Model Complexity and Compute Cost (n=2): Although less frequently mentioned, computational cost 
is a real barrier. Transformer-based models [31], [33] improved performance but were too heavy for 
deployment, requiring large memory and long training times. Some studies explored distillation or late-
fusion fallbacks, but in practice, high cost means the “boost” is not always worth the trade-off. 
Performance-boosting techniques that cannot scale or deploy easily risk remaining academic exercises 

rather than practical tools. 

• Interpretability and Privacy (n=2): Finally, studies like [32], [45] emphasize that interpretability and 
privacy constraints slow adoption. Deception detection with bio signals [32] raises sensitive ethical issues, 

 

12

10

7

6

3

2

2

M O D A L I T Y  I N T E G R A T I O N  &  …

D A T A  N O I S E  /  Q U A L I T Y  I S S U E S

D A T A S E T  /  B E N C H M A R K …

D O M A I N  S H I F T  /  …

C L A S S  I M B A L A N C E

M O D E L  C O M P L E X I T Y  /  …

I N T E R P R E T A B I L I T Y  /  P R I V A C Y

CHALLENGES
Challenges



 34 

while TikTok analytics [45] struggles with user privacy. Even if performance is boosted, opaque models 

or privacy risks make real-world application difficult. 

To complement these findings, Figure 6 shows the evaluation metrics reported across the studies. 

Accuracy remains the most common (18 studies), but many works also reported F1 (11), Precision (7), Recall 

(6), and AUC (3). 

 

Figure 6. Distribution of reported challenges in applying performance-boosting techniques across the 26 

reviewed studies. 

These metrics are not just formalities. They directly reflect the challenges above. Accuracy alone can be 

misleading under class imbalance or noisy data, as seen in [29], [41], [44]. F1 and Recall highlight whether 

models capture minority or hard-to-detect cases, making them essential when imbalance exists. AUC, used in 

clinical or probabilistic tasks [26], offers threshold-free evaluation that is more robust under skewed data. By 

expanding beyond Accuracy, researchers ensure that reported “boosts” are genuine and reliable, not artifacts 

of dataset bias. In other words, the shift in metrics is the field’s practical way of coping with the barriers that 

make performance boosting so difficult. 

In conclusion, the analyzed studies demonstrate that improving multimedia analytics performance requires 

not only better architecture design but also the removal of basic data and evaluation obstacles. The most 

common barriers to cross-modal learning are alignment and noisy inputs. At the same time, domain shift 

restricts real-world generalization, and dataset scarcity and lack of benchmarks restrict fair comparison. Class 

imbalance, computational limitations, and interpretability/privacy concerns are less common but still 
important. Because of these difficulties, a lot of research uses F1, Precision, Recall, and AUC in addition to 

Accuracy to ensure that gains are real and not just a mirage. New benchmarks, alignment-aware models, noise-

robust pipelines, and lightweight yet interpretable architectures will all be necessary to address these issues. 

Only then can performance-boosting techniques deliver reliable, generalizable, and ethically sound gains in 

multimedia data analytics [27] – [29], [31] – [33], [41], [44] – [50]. 

D. Future Opportunities in Multimedia Data Analytics (RQ3) 

As the challenges identified in Section C draw attention to existing limitations, they indicate critical 
opportunities for future development. To advance knowledge acquisition from multimodal information, 
research should transition from model-centric accuracy to a holistic evaluation framework. Table 2 provides 
an actionable roadmap and technical checklist—covering benchmarking, alignment, robustness, and 

efficiency—to guide future efforts in performance-boosting for multimedia analytics. 

Table 2. Summary of identified challenges and corresponding future research opportunities. 
Current Challenge Future Opportunity Example Studies  

Modality integration & 

alignment 

Develop advanced fusion mechanisms (cross-modal attention, 

alignment modules) and lightweight hybrid pipelines. 

[27], [28], [31], [33], 

[46], [49] 

Data noise & quality issues 
Improve noise-robust preprocessing, confidence-weighted fusion, 

and use synthetic/augmented data. 

[29], [41], [45], [48]–

[50] 

Dataset & benchmark 

limitations 

Create large-scale, standardized multimodal benchmarks across 

domains (healthcare, social media, education). 

[25], [26], [44], [47], 

[49], [50] 

Domain shift & 

generalization 

Explore transfer learning, domain adaptation, and few-/zero-shot 

learning for cross-platform robustness. 

[27], [44], [46], [48], 

[50] 

Class imbalance 
Employ data augmentation, reweighting, and use fairer evaluation 

metrics (F1, Recall, AUC). 
[29], [41], [44] 

Model complexity & 

compute cost 

Design efficient architectures (distilled transformers, pruning, 

quantization) for practical scalability. 
[31], [33] 

Interpretability & privacy 
Advance explainable multimodal AI, federated learning, and 

privacy-preserving methods. 
[32], [45] 
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In summary, the most promising future opportunities lie in creating standardized benchmarks and 

developing robust, efficient architectures that generalize across domains. At the same time, integrating 

contextual knowledge, pursuing responsible AI, and targeting high-impact domains such as healthcare, 

education, and marketing will ensure that performance-boosting techniques achieve both technical and 

societal value. These directions provide a roadmap for future research, ensuring that multimedia analytics 

continues to evolve into a field that produces reliable, interpretable, and impactful knowledge [25] – [50]. 

4. Conclusion 

This study systematically reviewed 26 recent publications in multimedia data analytics, focusing on 

performance-boosting techniques such as advanced preprocessing, fusion strategies, and deep learning 

architectures. The synthesis was guided by three research questions. 

First, RQ1 revealed that while multimodal approaches (specifically text–image and audio–video) are 

now standard, tri-modal and complex cross-modal combinations remain under-explored. Transformer-based 

models have become the dominant architecture, reflecting a significant shift toward deep attention-based 

interactions. Second, RQ2 identified critical barriers to performance, including modality misalignment, noisy 

data streams, and a lack of standardized benchmarks, which currently limit the scalability of these models. 

Finally, RQ3 highlighted future opportunities in lightweight modeling and explainable AI. 

To fulfill the roadmap, claim of this study, the following Actionable Roadmap for Future Research is 

proposed: 

• Standardized Benchmarking: Shift from private or domain-specific datasets to standardized, large-

scale benchmarks to allow for objective, reproducible performance comparisons across different 
fusion architectures. 

• Multi-Level Alignment Evaluation: Beyond final output accuracy, future work must implement 

metrics (Cross-modal Retrieval Recall atau Correlation Coefficients) to evaluate how well individual 

modalities are synchronized during the fusion process. 

• Robustness & Stress Testing: Researchers should conduct systematic evaluations under "noisy" 

conditions—such as missing modality streams or low-quality inputs—to ensure models are reliable 

for real-world deployment. 

• Efficiency & Hardware Constraints: Given the increasing complexity of transformers, there is a 

clear need for "green AI" approaches, focusing on model quantization and pruning to satisfy 

efficiency constraints for edge-device applications. 

In conclusion, multimedia data analytics is a continuously evolving research area. While significant progress 

has been made in deep learning and multimodal integration, its full potential remains undiscovered. By 

addressing these roadmap priorities, the research community can move toward more accurate, generalizable, 

and ethically responsible multimedia systems that deliver meaningful societal and commercial impact. 
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